Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Chemical Science and Engineering >> 2023, Volume 17, Issue 5 doi: 10.1007/s11705-022-2239-y

Simplistic hydrothermal synthesis approach for fabricating photoluminescent carbon dots and its potential application as an efficient sensor probe for toxic lead(II) ion detection

Received: 2022-06-20 Accepted: 2023-03-01 Available online: 2023-03-01

Next Previous

Abstract

The past decade has witnessed a variety of members of the carbon family along with exposure of carbon dots due to their magnificent properties in sensing, bioimaging, catalytic applications, biomedical fields, and so on. Herein, we report the simple hydrothermal method to fabricate photoluminescent doped carbon quantum dots for the detection of noxious lead(II) ions. Lead(II) ion is very venomous for both the environment and human health for which its detection is demanded area in the research field. The as-prepared carbon dots show excellent photostability, low toxicity and significant photoluminescence properties along with good water solubility. Along with these properties, carbon dots have a quantum yield of approximately 15%. In the practical field of application, these carbon dots have been used as sensing probes for the detection of lead(II) ions with a detection limit of 60 nmol·L–1. The fluorescence intensity of carbon dots was remarkably quenched in the presence of the lead(II) ion selectively among all the tested metal ions. Furthermore, we have studied the Stern–Volmer relationship for lead(II) quenching along with the explanation of the probable quenching mechanism. Ability of the doped carbon dots in heavy metal ions sensing in an environmental sample was demonstrated.

Related Research