Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Chemical Science and Engineering >> 2023, Volume 17, Issue 8 doi: 10.1007/s11705-022-2272-x

Lignin-based polymer with high phenolic hydroxyl group content prepared by the alkyl chain bridging method and applied as a dopant of PEDOT

Received: 2022-07-06 Accepted: 2023-03-03 Available online: 2023-03-03

Next Previous

Abstract

Inspired by the importance of the phenolic group to the electron transporting property of hole transport materials, phenolic hydroxyl groups were introduced in lignosulfonate (LS) via the alkyl chain bridging method to prepare phenolated-lignosulfonate (PLS). The results showed that the phenolic group was boosted from 0.81 mmol∙g–1 of LS to 1.19 mmol∙g–1 of PLS. The electrochemical property results showed two oxidation peaks in the cyclic voltammogram (CV) curve of PLS, and the oxidation potential of the PLS-modified electrode decreased by 0.5 eV compared with that of LS. This result indicates that PLS is more easily oxidized than LS. Based on the excellent electron transporting property of PLS, PLS was applied as a dopant in poly(3,4-ethylenedioxythiophene) (PEDOT, called PEDOT:PLSs). PLS showed excellent dispersion properties for PEDOT. Moreover, the transmittance measurement results showed that the transmittance of PEDOT:PLSs exceeded 85% in the range of 300–800 nm. The CV results showed that the energy levels of PEDOT:PLSs could be flexibly adjusted by PLS amounts. The results indicate that the phenolic hydroxyl group of lignin can be easily boosted by the alkyl chain bridging method, and phenolated lignin-based polymers may have promising potential as dopants of PEDOT to produce hole transporting materials for different organic photovoltaic devices.

Related Research