Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers in Energy >> 2009, Volume 3, Issue 2 doi: 10.1007/s11708-009-0024-y

Corrosion mechanisms of candidate structural materials for supercritical water-cooled reactor

1. School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; 2. National Key Laboratory for Nuclear Fuel and Materials, Nuclear Power Institute of China, Chengdu 610041, China

Available online: 2009-06-05

Next Previous

Abstract

Nickel-based alloys, austenitic stainless steel, ferritic/martensitic heat-resistant steels, and oxide dispersion strengthened steel are presently considered to be the candidate structural or fuel-cladding materials for supercritical water-cooled reactor (SCWR), one of the promising generation IV reactor for large-scale electric power production. However, corrosion and stress corrosion cracking of these candidate alloys still remain to be a major problem in the selection of nuclear fuel cladding and other structural materials, such as water rod. Survey of literature and experimental results reveal that the general corrosion mechanism of those candidate materials exhibits quite complicated mechanism in high-temperature and high-pressure supercritical water. Formation of a stable protective oxide film is the key to the best corrosion-resistant alloys. This paper focuses on the mechanism of corrosion oxide film breakdown for SCWR candidate materials.

Related Research