Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers in Energy >> 2011, Volume 5, Issue 3 doi: 10.1007/s11708-010-0128-4

Nucleate boiling in two types of vertical narrow channels

Institute of Thermal Science & Technology of Shandong University, Jinan 250061, China

Available online: 2011-09-05

Next Previous

Abstract

To explore the mechanism of boiling bubble dynamics in narrow channels, we investigate 2-mm wide I- and Z-shaped channels. The influence of wall contact angle on bubble generation and growth is studied using numerical simulation. The relationships between different channel shapes and the pressure drop are also examined, taking into account the effects of gravity, surface tension, and wall adhesion. The wall contact angle imposes considerable influence over the morphology of bubbles. The smaller the wall contact angle, the rounder the bubbles, and the less time the bubbles take to depart from the wall. Otherwise, the bubbles experience more difficulty in departure. Variations in the contact angle also affect the heat transfer coefficient. The greater the wall contact angle, the larger the bubble-covered area. Therefore, wall thermal resistance increases, bubble nucleation is suppressed, and the heat transfer coefficient is lowered. The role of surface tension in boiling heat transfer is considerably more important than that of gravity in narrow channels. The generation of bubbles dramatically disturbs the boundary layer, and the bubble bottom micro-layer can enhance heat transfer. The heat transfer coefficient of Z-shaped channels is larger than that of the I-shaped type, and the pressure drop of the former is clearly higher.

Related Research