Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers in Energy >> 2011, Volume 5, Issue 4 doi: 10.1007/s11708-011-0156-8

Numerical study of internal flow field and flow passage improvement of an inlet particle separator

Power Machinery and Engineering, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Available online: 2011-12-05

Next Previous

Abstract

By performing gas flow field numerical simulations for several inlet Reynolds numbers (from 2 × 10 to 9 × 10 ) and byflow ratios (from 10% to 20%), the present study has proposed to improve the flow passage of an inlet particle separator. An adjacent objective of the study is to lower pressure losses of the inlet particle separator (IPS). No particle has been included in the gas flow for a -epsilon turbulence model. The velocity distribution in different sections and the pressure coefficient along the duct have been analyzed, which indicates that there exist important low-velocity regions and vortices in the separation area. Therefore, the profile of streamlines along the original passage has been considered. This profile illustrated a vacuum region in the same area. All investigations suggest that the separation area is the most critical one for fulfilling the objective on pressure losses limitation. Then the flow passage improvement method has focused on the separation area. An improved shape has been designed in order to suit smoothly to the streamlines in this region. Similar numerical studies as those for the original shape have been conducted on this improved shape, confirming some considerable enhancements compared with the original shape. The significant vortices which appear in the original shape reduce in amount and size. Besides, pressure losses are greatly decreased in both outlets (up to 30% for high Reynolds number) and the flow is uniform at the main outlet. Subsequent engineering surveys could rely on expressions obtained for in both outlets which extend the pressure losses for a wide range of inlet Reynolds numbers. As a result, the numerical calculations demonstrate that the flow passage improvement method applied in this study has succeeded in designing a shape which enhances the flow behavior.

Related Research