Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers in Energy >> 2018, Volume 12, Issue 2 doi: 10.1007/s11708-017-0521-3

Liquid metal enabled combinatorial heat transfer science: toward unconventional extreme cooling

. Beijing Key Lab of Cryo-Biomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China.. Beijing Key Lab of Cryo-Biomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049; Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China

Accepted: 2017-12-18 Available online: 2018-06-04

Next Previous

Abstract

As a class of newly emerging material, liquid metal exhibits many outstanding performances in a wide variety of thermal management areas, such as thermal interface material, heat spreader, convective cooling and phase change material (PCM) for thermal buffering etc. To help mold next generation unconventional cooling technologies and further advance the liquid metal cooling to an ever higher level in tackling more extreme, complex and critical thermal issues and energy utilizations, a novel conceptual scientific category was dedicated here which could be termed as combinatorial liquid metal heat transfer science. Through comprehensive interpretations on a group of representative liquid metal thermal management strategies, the most basic ways were outlined for developing liquid metal enabled combined cooling systems. The main scientific and technical features of the proposed hybrid cooling systems were illustrated. Particularly, five abstractive segments toward constructing the combinatorial liquid metal heat transfer systems were clarified. The most common methods on innovating liquid metal combined cooling systems based on this classification principle were discussed, and their potential utilization forms were proposed. For illustration purpose, several typical examples such as low melting point metal PCM combined cooling systems and liquid metal convection combined cooling systems, etc. were specifically introduced. Finally, future prospects to search for and make full use of the liquid metal combined high performance cooling system were discussed. It is expected that in practical application in the future, more unconventional combination forms on the liquid metal cooling can be obtained from the current fundamental principles.

Related Research