• Home
  • Journals
  • Focus
  • Conferences
  • Researchers
  • Sign in

Outline

  • Abstract
  • Keywords

Figures(5)

标签(1)

Table 1

其他(2)

PDF
Document

Frontiers in Energy

    • PDF
    • collect

    CFD Simulation of thermal hydraulic characteristics in a typical upper plenum of RPV

    . State Key Laboratory of Multiphase Flow in Power Engineering, Department of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China.. Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China, Chengdu 610213, China

    Accepted: 2021-03-03 Available online:2021-03-03
    Show More
    10.1007/s11708-021-0728-1
    Cite this article
    Mingjun WANG, Lianfa WANG, Yingjie WANG, Wenxi TIAN, Jian DENG, Guanghui SU, Suizheng QIU.CFD Simulation of thermal hydraulic characteristics in a typical upper plenum of RPV[J].Frontiers in Energy:0-

    Abstract

    A comparative computational fluid dynamics (CFD) study was conducted on the three different types of pressurized water reactor (PWR) upper plenum, named TYPE 1 (support columns (SCs) and control rod guide tubes (CRGTs) with two large windows), TYPE 2 (SCs and CRGTs without windows), and TYPE 3 (two parallel perforated barrel shells and CRGTs). First, three types of upper plenum geometry information were collected, simplified, and adopted into the BORA facility, which is a 1/5 scale system of the four-loop PWR reactor. Then, the geometry, including the upper half core, upper plenum region, and hot legs, was built using the platform. After that, an unsteady calculation to simulate the reactor balance operation at hot full power scenario was performed. Finally, the differences of flowrate distribution at the core outlet and temperature distribution and transverse velocity inside the hot legs with different upper plenum internals were compared. The results suggest that TYPE 1 upper plenum internals cause the largest flowrate difference at the core outlet while TYPE 3 leads to the most even distributed flowrate. The distribution and evolution pattern of the tangential velocity inside hot legs is highly dependent on the upper plenum internals. Two counter-rotating swirls exist inside the TYPE 1 hot leg and only one swirl revolving around the hog leg axis exist inside the TYPE 2 hot leg. For TYPE 3, two swirls like that of TYPE 1 rotating around the hot leg axis significantly increase the temperature homogenization speed. This research provides meaningful guidelines for the future optimization and design of advanced PWR upper plenum internal structures.

    Keywords

    pressurized water reactor (PWR) ; upper plenum ; internal structures ; temperature distribution ; computational fluid dynamics (CFD)
    Previous article in issue
    article in issue Next
    登录后,您可以进行评论。请先登录

    评论

    评论

    • 所有评论
     咋就跳到顶部了
    2019-04-23 11:24:14
    回复 (0)
    inspur  手机账号
    2019-05-10 11:30:17
    回复 (0)

    Read

    14

    Download

    0

    Related Research

    Current Issue
      Current Issue
        Follow us
        Copyright © 2015 China Engineering Science Press.
        京ICP备11030251号
        Follow us
        Copyright © 2015 China Engineering Science Press.
        京ICP备11030251号