Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Structural and Civil Engineering >> 2008, Volume 2, Issue 2 doi: 10.1007/s11709-008-0018-6

Cracking resistance performance of super vertical-distance pumped SFRC

College of Materials Science and Engineering, Southeast University

Available online: 2008-06-05

Next Previous

Abstract

The mix ratio of steel fiber reinforced concrete (SFRC) was optimized using the principles that workability must meet the pumping demand and anti-cracking performance should be optimal. The effect of SFRC on the initial cracking load, the ultimate load and the crack width of the reinforced concrete (RC) member were analyzed in this paper. It was found that the admixture had good preservation of moisture and adhesion and the fibers distributed homogeneously in one hour out of the machine. According to the pumping results, the SFRC could be pumped vertically up to 306 m. Based on the standard computation formula of cracks, the maximum crack width of an RC member with 0.8% steel fiber (by volume) is about 32% lower than that of standard RC member. Through an experimental research on full-scale model tests for the steel and concrete composite anchorage zone on a pylon, the SFRC not only remarkably increases the crack resistance and the ultimate load, but the initial load also improves 33% approximately. It is also indicated that plastic shrinkage cracking of SFRC in which volume fraction of steel fibers is 0.8% can be restrained obviously and the unrestrained drying shrinkage can be diminished by about 50% at early age. The results confirmed that the SFRC can lessen the shrinkage crack of concrete and enhance markedly the direct tensile strength. Therefore, the SFRC can solve the key question of crack resistance for the anchorage zone of a bridge tower.

Related Research