Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Structural and Civil Engineering >> 2008, Volume 2, Issue 2 doi: 10.1007/s11709-008-0029-3

Stress-strain relationship of concrete in freeze-thaw environment

School of Civil Engineering, Harbin Institute of Technology;

Available online: 2008-06-05

Next Previous

Abstract

Adopting the ASTM C666 quick freeze-thaw method, freeze-thaw tests with the number of freeze-thaw cycles being 0, 100, 150, 200, 250, and 300, were carried out on eighteen concrete prism specimens, the frost-resistant level of which, reaches D300 grade. The internal micro-structures of these specimens were observed by means of scanning electron microscopy (SEM) in order to detect damages caused by the freeze-thaw action. Afterwards these frozen-thawed specimens were tested on monotonic axial load; stress-strain testing curves after the freeze-thaw action were obtained. The testing results show that with the increasing time of freeze-thaw cycles, both the internal micro-structures and the basic mechanical parameters, including the ultimate bearing capacity, the Poisson ratio and the modulus of elasticity, degenerate in various degrees. Finally, stress-strain theoretical curvilinear equations and correlated parameters relating to the loss of relative dynamic modulus of elasticity were proposed. These results provide great reference for further research on the behavior and the calculation model of concrete structures in a freeze-thaw environment.

Related Research