Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Structural and Civil Engineering >> 2018, Volume 12, Issue 1 doi: 10.1007/s11709-016-0375-5

Intermediate HSS bracing members during seismic excitations: modeling, design, and behavior

Department of Architectural Engineering, United Arab Emirates University, P. O. Box 15551, Al Ain, UAE

Accepted: 2017-04-06 Available online: 2018-03-08

Next Previous

Abstract

Concentric hollow structural section (HSS) bracing members are used frequently in steel framed structural systems to resist seismic excitations. Finite element modeling of the HSS braces that utilizes the true stress-strain curves produces hysteresis responses that are reasonable matches to the experimental response. True stress-strain curves are obtained from coupon tests or stub-column tests while utilizing an exponential function or strain hardening rule with a trial and error procedure to obtain the hysteresis behavior. In the current study, the true stress-strain curves are directly obtained from tests on stub-columns extracted from the full scale HSS bracing members away from the mid-length plastic hinge after cyclic testing. Two experimental tests (Shaback 2001 and Haddad 2004) were used to validate the model. Results indicate that the stress-strain curves for these braces are not unique. A refined damage accumulation model for ultra-low-cycle fatigue is implemented to predict fracture of the brace tests. The refined damage model is then used in the finite element modeling to predict fracture of braces in a chevron braced frame of an eight-storey building subjected to selected ground motions analyzed using OpenSees program. Results indicate that all braces could sustain the selected earthquake records without fracture.

Related Research