Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Structural and Civil Engineering >> 2018, Volume 12, Issue 3 doi: 10.1007/s11709-017-0393-y

Joint slip investigation based on finite element modelling verified by experimental results on wind turbine lattice towers

Civil Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran

Accepted: 2017-06-01 Available online: 2018-05-22

Next Previous

Abstract

Slippage corresponds to the relative displacement of a bolted joint subjected to shear loads since the construction clearance between the bolt shank and the bolthole at assembly can cause joint slip. Deflections of towers with joint slippage effects is up to 1.9 times greater than the displacements obtained by linear analytical methods. In this study, 8 different types of joints are modelled and studied in the finite element program, and the results are verified by the experimental results which have been done in the laboratory. Moreover, several types of joints have been modelled and studied and load-deformation curves have also been presented. Finally, joint slip data for different types of angles, bolt diameter and bolt arrangements are generated. Thereupon, damping ratios (z) for different types of connections are reported. The study can be useful to help in designing of wind turbine towers with a higher level of accuracy and safety.

Related Research