Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Structural and Civil Engineering >> 2018, Volume 12, Issue 4 doi: 10.1007/s11709-018-0512-4

The defect-length effect in corrosion detection with magnetic method for bridge cables

1. State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China
2. Department of Bridge Engineering, Tongji University, Shanghai 200092, China

Accepted: 2018-10-31 Available online: 2018-11-20

Next Previous

Abstract

Quantitative evaluation of the steel corrosion in cables is significant for the safe operation of cable-supported bridges. The magnetic flux (MF) examination shows great potential to detect the corrosion defect, or loss of metallic cross-sectional area (LMA). An LMA defect in steel cables can be measured accurately when it is longer than a certain length. However, for defects in early stage, where the length of corrosion area is short, the MF examination may produce unacceptable error. In this study, the effect of defect length on the MF examination for corrosion detection of bridge cables is investigated through theoretical analysis and model experiments. An original analytical model to quantify the influence of defect length is proposed based on the equivalent magnetic circuit method. Then, MF examination experiments are performed on a series of cable models with different defect lengths and locations to verify the analytical model. Further, parameter study is conducted based on the proposed analytical model to clarify the mechanism of the defect-length effect. The results show that the area loss caused by short corrosion damage will be underestimated if the defect-length effect is neglected, and this effect can be quantified efficiently with the proposed analytical model.

Related Research