Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Structural and Civil Engineering >> 2019, Volume 13, Issue 5 doi: 10.1007/s11709-019-0534-6

Parametric study of hexagonal castellated beams in post-tensioned self-centering steel connections

Faculty of Water and Environmental Engineering, Shahid Beheshti University, Tehran 16589-53571, Iran

Accepted: 2019-06-05 Available online:2019-06-05

Next Previous


The effects of important parameters (beam reinforcing plates, initial post-tensioning, and material properties of steel angles) on the behavior of hexagonal castellated beams in post-tensioned self-centering (PTSC) connections undergone cyclic loading up to 4% lateral drift have been investigated by finite element (FE) analysis using ABAQUS. The PTSC connection is comprised of bolted top and bottom angles as energy dissipaters and steel strands to provide self-centering capacity. The FE analysis has also been validated against the experimental test. The new formulations derived from analytical method has been proposed to predict bending moment of PTSC connections. The web-post buckling in hexagonal castellated beams has been identified as the dominant failure mode when excessive initial post-tensioning force is applied to reach greater bending moment resistance, so it is required to limit the highest initial post-tensioning force to prevent this failure. Furthermore, properties of steel material has been simulated using bilinear elastoplastic modeling with 1.5% strain-hardening which has perfectly matched with the real material of steel angles. It is recommended to avoid using steel angles with high yielding strength since they lead to the yielding of bolt shank. The necessity of reinforcing plates to prevent beam flange from local buckling has been reaffirmed.

Related Research