Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Structural and Civil Engineering >> 2020, Volume 14, Issue 2 doi: 10.1007/s11709-019-0603-x

Evaluation of the compatibility between rubber and asphalt based on molecular dynamics simulation

. Key Laboratory for Special Area Highway Engineering of Ministry of Education, Chang’an University, Xi’an 710064, China.. Jiangsu Sinoroad Engineering Research Institute Co., Ltd., Nanjing 211806, China

Accepted: 2020-03-31 Available online: 2020-03-31

Next Previous

Abstract

Using of rubber asphalt can both promote the recycling of waste tires and improve the performance of asphalt pavement. However, the segregation of rubber asphalt caused by the poor storage stability always appears during its application. Storage stability of asphalt and rubber is related to the compatibility and also influenced by rubber content. In this study, molecular models of different rubbers and chemical fractions of asphalt were built to perform the molecular dynamics simulation. The solubility parameter and binding energy between rubber and asphalt were obtained to evaluate the compatibility between rubber and asphalt as well as the influence of rubber content on compatibility. Results show that all three kinds of rubber are commendably compatible with asphalt, where the compatibility between asphalt and cis-polybutadiene rubber (BR) is the best, followed by styrene-butadiene rubber (SBR), and natural rubber (NR) is the worst. The optimum rubber contents for BR asphalt, SBR asphalt, and NR asphalt were determined as 15%, 15%, and 20%, respectively. In addition, the upper limits of rubber contents were found as between 25% and 30%, between 20% and 25%, and between 25% and 30%, respectively.

Related Research