Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Structural and Civil Engineering >> 2020, Volume 14, Issue 3 doi: 10.1007/s11709-020-0584-9

Finite element modeling of thermo-active diaphragm walls

. Centre for Smart Infrastructure and Construction, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK.. Civil and Environmental Engineering Department, Brunel Univisity, London UB8 3PH, UK

Received: 2020-03-11 Accepted: 2020-06-16 Available online: 2020-06-16

Next Previous

Abstract

There are two major challenges faced by modern society: energy security, and lowering carbon dioxide gas emissions. Thermo-active diaphragm walls have a large potential to remedy one of these problems, since they are a renewable energy technology that uses underground infrastructure as a heat exchange medium. However, extensive research is required to determine the effects of cyclic heating and cooling on their geotechnical and structural performance. In this paper, a series of detailed finite element analyses are carried out to capture the fully coupled thermo-hydro-mechanical response of the ground and diaphragm wall. It is demonstrated that the thermal operation of the diaphragm wall causes changes in soil temperature, thermal expansion/shrinkage of pore water, and total stress applied on the diaphragm wall. These, in turn, cause displacements of the diaphragm wall and variations of the bending moments. However, these effects on the performance of diaphragm wall are not significant. The thermally induced bending strain is mainly governed by the temperature differential and uneven thermal expansion/shrinkage across the wall.

Related Research