Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Structural and Civil Engineering >> 2020, Volume 14, Issue 3 doi: 10.1007/s11709-020-0607-6

State-of-the-art on resistance of bearing-type bolted connections in high strength steel

. State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China.. College of Civil Engineering, Tongji University, Shanghai 200092, China

Received: 2020-03-31 Accepted: 2020-05-11 Available online: 2020-05-11

Next Previous

Abstract

With the recent development of material science, high strength steel (HSS) has become a practical solution for landmark buildings and major projects. The current codes for design of bearing-type bolted connections of steel constructions were established based on the research of conventional steels. Since the mechanical properties of HSS are different from those of conventional steels, more works should be done to develop the appropriate approach for the design of bearing-type bolted connections in HSS. A review of the research carried out on bearing-type bolted connections fabricated from conventional steel and HSS is presented. The up-to-date tests conducted at Tongji University on four connection types fabricated from three grades of HSS with nominal yield strengths of 550, 690, and 890 MPa are presented. The previous research on failure modes, bearing resistance and the design with consideration of bolt hole elongation are summarized. It is found that the behavior of bolted connections in HSS have no drastic difference compared to that of conventional steel connections. Although the ductility is reduced, plastic deformation capacity of HSS is sufficient to ensure the load redistribution between different bolts with normal construction tolerances. It is also found that behavior of each bolt of multi-bolt connections arranged in perpendicular to load direction is almost identical to that of a single-bolt connection with the same end distance. For connections with bolts arranged in parallel to load direction, the deformation capacity of the whole connection depends on the minimum value between the end distance and the spacing distances in load direction. The comparison with existing design codes shows that Eurocode3 and Chinese GB50017-2017 are conservative for the design of bolted connections in HSS while AISC 360-16 may overestimate the bearing resistance of bolted connections.

Related Research