Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Environmental Science & Engineering >> 2007, Volume 1, Issue 2 doi: 10.1007/s11783-007-0034-0

Pollution of NPEOs in four municipal sewage treatment plants in the north of China

1.College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China; Department of Chemical Engineering, Anyang College of Engineering, Anyang 455000, China; 2.College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China

Available online: 2007-06-05

Next Previous

Abstract

The concentration and distribution of nonylphenol polyethoxylates (NPEOs represents the mixture, and NPEO represents the monomer) and its metabolites in the influent and effluent of four municipal sewage treatment plants (STPs) in the north of China were measured. Moreover, the concentration and distribution of the above chemicals in the sludge of two STPs were also determined, and the transfer and fate of NPEOs in the sewage treatment process were discussed primarily by analyzing the distribution of the products in the effluent and the sludge. The results showed that NPEOs and its metabolites existed in all the samples of the influent, effluent, and sludge. NPEOs were degraded in the sewage treatment process with the removal efficiency in the range of 23.38% 77.11%, or an average of 52.86%. However, the large analogs of NPEO were only degraded to small ones, whose degradation rate was rather slow, and consequently the degradation was not complete. Hence, the concentrations of some small metabolites, such as nonylphenol (NP), nonylphenol monoethoxylate (NP1EO), and nonylphenol diethoxylate (NP2EO) were elevated in the effluent. These small metabolites are more toxic than the large NPnEO analogs, and some of them were reported to exhibit environmental endocrine disrupting activity. From this point of view, the process of sewage treatment does not reduce but elevate the risk of NPEOs, which becomes the main source of these small NPEO in the environment. The sludge exhibited good adsorption ability for NPEOs, especially for the small analogs, which led to the high level of NPEOs in the sludge. Hence, reasonable disposal of the surplus sludge to avoid re-pollution is very important.

Related Research