Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Environmental Science & Engineering >> 2010, Volume 4, Issue 2 doi: 10.1007/s11783-010-0016-5

Recycling combustibles from aged municipal solid wastes (MSW) to improve fresh MSW incineration in Shanghai: Investigation of necessity and feasibility

1.Thermal & Environmental Engineering Institute, Tongji University, Shanghai 200092, China; 2.National Engineering Research Center for Urban Pollution Control, Tongji University, Shanghai 200092, China;

Available online: 2010-06-05

Next Previous

Abstract

Aged municipal solid wastes (MSW) excavated from landfills and dumpsites were characterized to analyze their fraction composition, moisture content, and lower heat value (LHV). The necessity and feasibility of recycling combustibles from aged MSW to improve the incineration of fresh MSW were investigated. The results showed that combustibles in aged MSW were easily separated from other components and than LHV of the separated combustibles are higher than 11000 kJ/kg. The fresh MSW are of high moisture contents with average LHV below 6500 kJ/kg, making their stable combustion difficult to maintain in MSW incinerators. For both fresh MSW and aged MSW, plastics are the main contributor to their LHV. To improve incineration of fresh MSW that are characterized with low LHV, combustibles separated from aged MSW were made into refuse derived fuel (RDF) pellets and were then added to fresh MSW by 2% wt.– 5% wt. LHV variation and air supply resistance change of the MSW layer on the incinerator grate caused by the addition of RDF was checked, and no significant changes were found. No obvious difference was observed for the ‘burn-out time’ between RDF pellets and fresh MSW either. RDF made from aged MSW combustibles is found to be a promising auxiliary fuel to improve the incineration of fresh MSW, and aged MSW from old landfill cells and dumpsites can be finally disposed of jointly with fresh MSW by recycling combustible from the former to be co-incinerated with the latter in the incineration plants.

Related Research