Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Environmental Science & Engineering >> 2014, Volume 8, Issue 6 doi: 10.1007/s11783-013-0621-1

Speciation evolutions of target metals (Cd, Pb) influenced by chlorine and sulfur during sewage sludge incineration

Key Laboratory of Clean Energy (Liaoning Province), College of Energy and Environment, Shenyang Aerospace University, Shenyang 110136, China

Available online: 2014-11-17

Next Previous

Abstract

In sludge incineration, the thermal behavior of heavy metal is a growing concern. In this work, the combined analysis of metal partitioning behavior between vapor phase and condensed phase, speciation redistribution in condensed phase and the difference of metal species in binding energy was carried out to investigate the possible volatilization-condensation mechanism of heavy metals in high-temperature sludge incineration. It was found that there were two steps in metal volatilization. The initial volatilization of heavy metal originated from their exchangeable (EXC), carbonate bound (CAR) and iron–manganese bound (FM) fractions, which is primarily composed of simple substance, chlorides, oxides and sulfides. With the increase of chlorine and sulfur in sludge, the inner speciation redistribution of heavy metals occurred in condensed phase, which was an important factor affecting the potential volatility of heavy metals. A partial of metal species with complexed (COM) and residual (RES) fractions gradually decomposed into simple substance or ions, oxides and carbonates, which significantly strengthened the second volatility. In presence of chlorine, about 46% of Cd with the RES fraction disappeared when the volatility rate of Cd increased by 44.89%. Moreover, about 9% of Pb with COM fraction disappeared when there was an increase of nearly 10% in the volatilization rate. Thus, the second volatilization was mainly controlled by the decomposition of metal species with COM and RES fractions. By virtue of XRD analysis and the binding energy calculation, it was found that metal complex and silicates were inclined to decompose under high temperature due to poor thermo stability as compared with sulfates.

Related Research