Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Environmental Science & Engineering >> 2016, Volume 10, Issue 2 doi: 10.1007/s11783-014-0760-z

Optimized porous clay heterostructure for removal of acetaldehyde and toluene from indoor air

1. Department of Environmental Science, Zhejiang University, Hangzhou 310058, China.2. Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China

Available online: 2016-02-01

Next Previous

Abstract

Adsorption is the most widely used technology for the removal of indoor volatile organic compounds (VOCs). However, existing adsorbent-based technologies are inadequate to meet the regulatory requirement, due to their limited adsorption capacity and efficiency, especially under high relative humidity (RH) conditions. In this study, a series of new porous clay heterostructure (PCH) adsorbents with various ratios of micropores to mesopores were synthesized, characterized and tested for the adsorption of acetaldehyde and toluene. Two of them, PCH25 and PCH50, exhibited markedly improved adsorption capability, especially for hydrophilic acetaldehyde. The improved adsorption was attributed to their large micropore areas and high micropore-to-mesopore volume ratios. The amount of acetaldehyde adsorbed onto PCH25 at equilibrium reached 62.7 mg·g , eight times as much as the amount adsorbed onto conventional activated carbon (AC). Even at a high RH of 80%, PCH25 removed seven and four times more of the acetaldehyde than AC and the unmodified raw PCHs did, respectively. This new PCH optimized for their high adsorption and resistance to humidity has promising applications as a cost-effective adsorbent for indoor air purification.

Related Research