Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Environmental Science & Engineering >> 2015, Volume 9, Issue 6 doi: 10.1007/s11783-015-0821-y

Performance and kinetics of iron-based oxygen carriers reduced by carbon monoxide for chemical looping combustion

School of Environment, Tsinghua University, Beijing 100084, China

Accepted: 2015-10-23 Available online: 2015-11-23

Next Previous

Abstract

Chemical looping combustion is a promising technology for energy conversion due to its low-carbon, high-efficiency, and environmental-friendly feature. A vital issue for CLC process is the development of oxygen carrier, since it must have sufficient reactivity. The mechanism and kinetics of CO reduction on iron-based oxygen carriers namely pure Fe O and Fe O supported by alumina (Fe O /Al O ) were investigated using thermo-gravimetric analysis. Fe O /Al O showed better reactivity over bare Fe O toward CO reduction. This was well supported by the observed higher rate constant for Fe O /Al O over pure Fe O with respective activation energy of 41.1±2.0 and 33.3±0.8 kJ·mol . The proposed models were compared via statistical approach comprising Akaike information criterion with correction coupled with F-test. The phase-boundary reaction and diffusion control models approximated to 95% confidence level along with scanning electron microscopy results; revealed the promising reduction reactions of pure Fe O and Fe O /Al O . The boosting recital of iron-based oxygen carrier support toward efficient chemical looping combustion could be explained accurately through the present study.

Related Research