Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Environmental Science & Engineering >> 2016, Volume 10, Issue 5 doi: 10.1007/s11783-016-0833-2

Key features of new particle formation events at background sites in China and their influence on cloud condensation nuclei

. State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA,Chinese Academy of Meteorological Sciences, Beijing 100081, China.. State Key Laboratory of Cryospheric Sciences, Cold and Arid Region Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China.. College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China

Available online: 2016-05-09

Next Previous

Abstract

New particle formation (NPF) event at multi rural sites in China Identifying the characteristics of NPF event Comparing NPF event between clean and polluted conditions Quantifying contribution to the cloud condensation nuclei Implication of climate and air quality Long-term continuous measurements of particle number size distributions with mobility diameter sizes ranging from 3 to 800 nm were performed to study new particle formation (NPF) events at Shangdianzi (SDZ), Mt. Tai (TS), and Lin’an (LAN) stations representing the background atmospheric conditions in the North China Plain (NCP), Central East China (CEC), and Yangtze River Delta (YRD) regions, respectively. The mean formation rate of 3-nm particles was 6.3, 3.7, and 5.8 cm ·s , and the mean particle growth rate was 3.6, 6.0, and 6.2 nm·h at SDZ, TS, and LAN, respectively. The NPF event characteristics at the three sites indicate that there may be a stronger source of low volatile vapors and higher condensational sink of pre-existing particles in the YRD region. The formation rate of NPF events at these sites, as well as the condensation sink, is approximately 10 times higher than some results reported at rural/urban sites in western countries. However, the growth rates appear to be 1–2 times higher. Approximately 12%–17% of all NPF events with nucleated particles grow to a climate-relevant size (>50 nm). These kinds of NPF events were normally observed with higher growth rate than the other NPF cases. Generally, the cloud condensation nuclei (CCN) number concentration can be enhanced by approximately a factor of 2–6 on these event days. The mean value of the enhancement factor is lowest at LAN (2–3) and highest at SDZ (~4). NPF events have also been found to have greater impact on CCN production in China at the regional scale than in the other background sites worldwide.

Related Research