Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Environmental Science & Engineering >> 2016, Volume 10, Issue 4 doi: 10.1007/s11783-016-0848-8

Utilization of nano/micro-size iron recovered from the fine fraction of automobile shredder residue for phenol degradation in water

. Department of Environmental Engineering, Kwangwoon University, Seoul 139-701, Republic of Korea. .. Division of General Education, Kwangwoon University, Seoul 139-701, Republic of Korea. .. Graduate School of Environmental Studies, Kwangwoon University, Seoul 139-701, Republic of Korea

Available online: 2016-05-30

Next Previous

Abstract

Phenol removal by n/m Fe in the presence of H O was highly effective. Increasing the amounts of n/m Fe and H O ?increased the phenol removal rate. Phenol removal was decreased with an increase in the concentration of phenol. The natural pH (6.9) of the solution was highly effective for phenol removal. The pseudo-first-order kinetics was best fitted for the degradation of phenol. The study investigates the magnetic separation of Fe from automobile shredder residue (ASR) (<0.25 mm) and its application for phenol degradation in water. The magnetically separated Fe was subjected to an ultrasonically assisted acid treatment, and the degradation of phenol in an aqueous solution using nano/micro-size Fe (n/m Fe) was investigated in an effort to evaluate the possibility of utilizing n/m Fe to remove phenol from wastewater. The prepared n/m Fe was analyzed by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The effects of the dosages of n/mFe, pH, concentration of phenol and amount of H O on phenol removal were evaluated. The results confirm that the phenol degradation rate was improved with an increase in the dosages of n/mFe and H O ; however, the rate is reduced when the phenol concentration is higher. The degradation of phenol by n/mFe followed the pseudo-first-order kinetics. The value of the reaction rate constant ( was increased as the amounts of n/m Fe and H O increased. Conversely, the value of was reduced when the concentration of phenol was increased. The probable mechanism behind the degradation of phenol by n/m Fe is the oxidation of phenol through hydroxyl radicals which are produced during the reaction between H O and n/m Fe.

Related Research