Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Environmental Science & Engineering >> 2017, Volume 11, Issue 4 doi: 10.1007/s11783-017-0968-9

Design and evaluation of control strategies in urban drainage systems in Kunming city

School of Environment, Tsinghua University, Beijing 100084, China

Available online: 2017-08-03

Next Previous

Abstract

Real time control (RTC) of urban drainage systems (UDSs) is an important measure to reduce combined sewer overflow (CSO) and urban flooding, helping achieve the aims of ‘Sponge City’. Application of RTC requires three main steps: strategy design, simulation-based evaluation and field test. But many of published RTC studies are system-specific, lacking discussions on how to design a strategy step by step. In addition, the existing studies are prone to use hydrologic model to evaluated strategies, but a more precise and dynamic insight into strategy performance is needed. To fill these knowledge gaps, based on a case UDS in Kunming city, a study on RTC strategy design and simulation-based evaluation is performed. Two off-line volume-based RTC strategy design principles, and , are emphasized. Following these principles, a detailed design procedure is shown for the case UDS resulting in three RTC strategies: static, constant and equal filling. The proposed strategies are evaluated based on a hydrodynamic model- Storm Water Management Model (SWMM) - under four typical rainfall events characterized by different return periods (1-year or 0.5 year) and different spatial distributions (uniform or uneven). The equal filling strategy outperforms other two strategies and it can achieve 10% more CSO reduction and 5% more flooding reduction relative to the no-tank case.

Related Research