Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Environmental Science & Engineering >> 2018, Volume 12, Issue 3 doi: 10.1007/s11783-018-1031-1

Effectiveness of aerobic pretreatment of municipal solid waste for accelerating biogas generation during simulated landfilling

. School of Environment, Tsinghua University, Beijing 100084, China.. Key Laboratory for Solid Waste Management and Environment Safety (Tsinghua University), Ministry of Education of China, Beijing 100084, China.. Solid waste and Chemical Management Centre, Ministry of Environmental Protection, Beijing 100029, China.. DII, Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy

Available online: 2018-06-25

Next Previous

Abstract

This study evaluates the effectiveness of aerobic pretreatment of municipal solid waste (MSW) on reducing lag phase and accelerating biogas generation. Aerobic pretreatment degree (APD) was determined on the basis of reduction in volatile solids (VS) on a wet weight basis. In this study, intermittent aeration (IA) was applied to three reactors as a main aeration mode; since a single reactor was operated under continuous aeration mode. However, the purpose of the experiment was to reduce VS content of waste, irrespective of the comparison between aeration modes. Fresh MSW was first pretreated aerobically with different aeration rates (10, 40, 60 and 85 L/min/m ) for the period of 30–50 days, resulting in VS-loss equivalent to 20%, 27%, 38% and 53% on w/w basis for the wastes A1, A2, A3 and A4, respectively. The cumulative biogas production, calculated based on the modified Gompertz model were 384, 195, 353, 215, and 114 L/kg VS for the wastes A0, A1, A2, A3 and A4, respectively. Untreated waste (A0) showed a long lag phase; whereas the lag phases of pretreated MSW were reduced by more than 90%. Aerobically pretreated wastes reached stable methanogenic phase within 41 days compared to 418 days for untreated waste. The waste mass decreased by about 8% to 27% compared to untreated MSW, indicative that even more MSW could be placed in the same landfill. The study confirmed the effectiveness of aerobic pretreatment of MSW prior to landfilling on reducing lag phase and accelerating biogas generation.

Related Research