Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Environmental Science & Engineering >> 2020, Volume 14, Issue 6 doi: 10.1007/s11783-020-1276-3

Algae (

1. Department of Civil, Architectural and Environmental Engineering, Missouri University of Science and Technology, Rolla, MO 65409, USA
2. The Center for Research in Energy and Environment (CREE), Missouri University of Science and Technology, Rolla, MO 65409, USA

Available online: 2020-06-09

Next Previous


Abstract • Micro-plastics (MPs) significantly increase Pb toxicity. • Algae reduce the combined toxicity of MP and Pb. • The toxicity increase comes from high soluble Pb and MP-Pb uptake. • The toxicity reduction might come from energy related pathway. Microplastics (MPs) have been recognized as a new class of emerging contaminants in recent years. They not only directly impact aquatic organisms, but also indirectly impact these organisms by interacting with background toxins in the environment. Moreover, under realistic environmental conditions, algae, a natural food for aquatic organisms, may alter the toxicity pattern related to MPs. In this research, we first examined the toxicity of MPs alone, and their effect on the toxicity of lead (Pb) on Ceriodaphnia dubia (C. dubia), a model aquatic organism for toxicity survey. Then, we investigated the effect of algae on the combined toxicity of MPs and Pb. We observed that, MPs significantly increased Pb toxicity, which was related to the increase in soluble Pb concentration and the intake of Pb-loaded MPs, both of which increased the accumulation of Pb in C. dubia. The presence of algae mitigated the combined toxicity of MPs and Pb, although algae alone increased Pb accumulation. Therefore, the toxicity mitigation through algae uptake came from mechanisms other than Pb accumulation, which will need further investigation.

Related Research