Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Engineering Management >> 2023, Volume 10, Issue 2 doi: 10.1007/s42524-021-0180-2

Coupling analysis of passenger and train flows for a large-scale urban rail transit system

Available online: 2022-01-10

Next Previous

Abstract

Coupling analysis of passenger and train flows is an important approach in evaluating and optimizing the operation efficiency of large-scale urban rail transit (URT) systems. This study proposes a passenger–train interaction simulation approach to determine the coupling relationship between passenger and train flows. On the bases of time-varying origin–destination demand, train timetable, and network topology, the proposed approach can restore passenger behaviors in URT systems. Upstream priority, queuing process with first-in-first-serve principle, and capacity constraints are considered in the proposed simulation mechanism. This approach can also obtain each passenger’s complete travel chain, which can be used to analyze (including but not limited to) various indicators discussed in this research to effectively support train schedule optimization and capacity evaluation for urban rail managers. Lastly, the proposed model and its potential application are demonstrated via numerical experiments using real-world data from the Beijing URT system (i.e., rail network with the world’s highest passenger ridership).

Related Research