Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Frontiers of Engineering Management >> 2023, Volume 10, Issue 1 doi: 10.1007/s42524-022-0224-2

Toward resilient cloud warehousing via a blockchain-enabled auction approach

Received: 2022-01-27 Accepted: 2023-02-14 Available online: 2023-02-14

Next Previous

Abstract

Cloud warehousing service (CWS) has emerged as a promising third-party logistics service paradigm driven by the widespread use of e-commerce. The current CWS billing method is typically based on a fixed rate in a coarse-grained manner. This method cannot reflect the true service value under the fluctuating e-commerce logistics demand and is not conducive to CWS resilience management. Accordingly, a floating mechanism can be considered to introduce more flexible billing. A CWS provider lacks sufficient credibility to implement floating mechanisms because it has vested interests in terms of fictitious demand. To address this concern, this report proposes a blockchain-enabled floating billing management system as an overall solution for CWS providers to enhance the security, credibility, and transparency of CWS. A one-sided Vickrey–Clarke–Groves (O-VCG) auction mechanism model is designed as the underlying floating billing mechanism to reflect the real-time market value of fine-grained CWS resources. A blockchain-based floating billing prototype system is built as an experimental environment. Our results show that the O-VCG mechanism can effectively reflect the real-time market value of CWSs and increase the revenue of CWS providers. When the supply of CWS providers remains unchanged, allocation efficiency increases when demand increases. By analyzing the performance of the O-VCG auction and comparing it with that of the fixed-rate billing model, the proposed mechanism has more advantages. Moreover, our work provides novel managerial insights for CWS market stakeholders in terms of practical applications.

Related Research