Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2016, Volume 2, Issue 1 doi: 10.1016/J.ENG.2016.01.011

Marine Renewable Energy Seascape

School of Engineering, The University of Edinburgh, Edinburgh EH9 3JL, UK

Received: 2016-02-22 Revised: 2016-03-05 Accepted: 2016-03-07 Available online: 2016-03-31

Next Previous

Abstract

Energy production based on fossil fuel reserves is largely responsible for carbon emissions, and hence global warming. The planet needs concerted action to reduce fossil fuel usage and to implement carbon mitigation measures. Ocean energy has huge potential, but there are major interdisciplinary problems to be overcome regarding technology, cost reduction, investment, environmental impact, governance, and so forth. This article briefly reviews ocean energy production from offshore wind, tidal stream, ocean current, tidal range, wave, thermal, salinity gradients, and biomass sources. Future areas of research and development are outlined that could make exploitation of the marine renewable energy (MRE) seascape a viable proposition; these areas include energy storage, advanced materials, robotics, and informatics. The article concludes with a sustainability perspective on the MRE seascape encompassing ethics, legislation, the regulatory environment, governance and consenting, economic, social, and environmental constraints. A new generation of engineers is needed with the ingenuity and spirit of adventure to meet the global challenge posed by MRE.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

References

[ 1 ] International Energy Agency. World energy outlook 2012. Paris: International Energy Agency; 2012.

[ 2 ] International Energy Agency. World energy outlook special report 2015: energy and climate change. Paris: International Energy Agency; 2015.

[ 3 ] National Oceanic and Atmospheric Administration. National Centers for Environmental Information, State of the Climate: Global Analysis for July 2015 [Internet]. 2015Aug [cited 2016Mar4]. Available from: http://www.ncdc.noaa.gov/sotc/global/201507.

[ 4 ] Gehm R. Lund University runs truck diesel engines on gasoline to boost efficiency, reduce emissions [Internet]. 2014Mar18 [cited 2016Mar4]. Available from: http://articles.sae.org/12892/.

[ 5 ] International Energy Agency. Technology roadmap: carbon capture and storage. Paris: International Energy Agency; 2013.

[ 6 ] IEA Renewable Energy Working Party. Renewable energy... into the mainstream. Sittard: Novem; 2002.

[ 7 ] Lewis A, Estefen S, Huckerby J, Lee KS, Musial W, Pontes T, Ocean energy. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Matschoss P, Kadner S, , editors Renewable energy sources and climate change mitigation: Special report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press; 2012. p. 497−534.

[ 8 ] Krewitt W, Nienhaus K, Kleßmann C, Capone C, Stricker E, Graus W, Role and potential of renewable energy and energy efficiency for global energy supply. Dessau-Roßlau: Federal Environment Agency (Umweltbundesamt); 2009Dec. Report No.: (UBA-FB) 001323/E.

[ 9 ] Capps SB, Zender CS. Estimated global ocean wind power potential from QuikSCAT observations, accounting for turbine characteristics and siting. J Geophys Res 2010; 115(D9): D09101.

[10] Rogner HH, Barthel F, Cabrera M, Faaij A, Giroux M, Hall D, Energy resources. In: United Nations Development Programme, United Nations Department of Economic and Social Affairs, World Energy Council. World energy assessment: energy and the challenge of sustainability. New York: UNDP; 2000. p. 135−72.

[11] Sims REH, Schock RN, Adegbululgbe A, Fenhann J, Konstantinaviciute I, Moomaw W, Energy supply. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA, editors Climate change 2007: mitigation of climate change. New York: Cambridge University Press; 2007. p. 251−322.

[12] Charlier RH, Justus JR. Ocean energies: environmental, economic and technological aspects of alternative power sources. Amsterdam: Elsevier Science Ltd.; 1993.

[13] Mørk G, Barstow S, Kabuth A, Pontes MT. Assessing the global wave energy potential. In: Proceedings of OMAE2010: 29th International Conference on Ocean, Offshore Mechanics and Arctic Engineering: Volume 3; 2010Jun6−11; Shanghai, China. New York: ASME Press; 2010. p. 447−54.

[14] Nihous GC. A preliminary assessment of ocean thermal energy conversion resources. J Energy Resour Technol 2007; 129(1): 10−7. link1

[15] Skråmestø ØS, Skilhagen SE, Nielsen WK. Power production based on osmotic pressure. In: Proceedings of Waterpower XVI; 2009Jul27−30; Spokane, WA, USA; 2009.

[16] Salter SH. Correcting the under-estimate of the tidal-stream resource of the Pentland Firth [CD-ROM]. In: Proceedings of the 8th European Wave and Tidal Energy Conference: EWTEC 2009; 2009Sep7−10; Uppsala, Sweden. Uppsala: Uppsala University; 2009.

[17] Joint Nature Conservation Committee. Laminaria hyperborea forest with Echinus esculentus and Palmaria palmata., Meikle Spiker, Dunbar, Paul Brazier [Internet]. [cited 2015Feb20]. Available from: http://www.jncc.gov.uk/Marine/biotopes/biotope.aspx?biotope=JNCCMNCR00001957.

[18] Ocean Renewable Energy Group (OREG). Charting the course: Canada’s marine renewable energy technology roadmap [Internet]. Halifax: OREG; 2011 [cited 2016Mar20]. Available from: http://www.marinerenewables.ca/wp-content/uploads/2012/09/MRE_Roadmap_e.pdf.

[19] Energy Technologies Institute, UK Energy Research Centre. Marine energy technology roadmap 2014 [Internet]. Loughborough: Energy Technologies Institute; 2014 [cited 2016Mar20]. Available from: http://www.eti.co.uk/wp-content/uploads/2014/04/Marine-Roadmap-FULL-SIZE-DIGITAL-SPREADS-.pdf.

[20] Marine Renewables Canada. Marine renewable energy in Canada & the gobal context: state of the sector report−2013 [Internet]. [cited 2016Mar20]. Available from: http://www.marinerenewables.ca/wp-content/uploads/2012/11/State-of-the-Canadian-MRE-Sector-20131.pdf.

[21] Day AH, Babarit A, Fontaine A, He Y-P, Kraskowski M, Murai M, Hydrodynamic modelling of marine renewable energy devices: a state of the art review. Ocean Eng 2015; 108: 46−69. link1

[22] Khan MJ, Bhuyan G, Iqbal MT, Quaicoe JE. Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: a technology status review. Appl Energ 2009; 86(10): 1823−35. link1

[23] Drew B, Plummer AR, Sahinkaya MN. A review of wave energy converter technology. P I Mech Eng A-J Pow 2009; 223(8): 887−902.

[24] Adcock TAA, Draper S, Nishino T. Tidal power generation−a review of hydrodynamic modelling. P I Mech Eng A-J Pow 2015; 229(7): 755−71.

[25] AMSC. SeaTitanTM 10 MW wind turbine [Internet]. [cited 2016Feb20]. Available from: http://www.amsc.com/documents/seatitan-10-mw-wind-turbine-data-sheet/.

[26] Fichaux N, Beurskens J, Jensen PH, Wilkes J. UpWind: design limits and solutions for very large wind turbines. 2011Mar. Contract No.: 019945 (SES6).

[27] Guedes Soares C, Bhattacharjee J, Karmakar D. Overview and prospects for development of wave and offshore wind energy. Brodogradnja 2014; 65(2): 87−109.

[28] Pugh D, Woodworth PL. Sea-level science: understanding tides, surges, tsunamis and mean sea-level changes. 2nd ed. Cambridge: Cambridge University Press; 2014.

[29] Serhadlıoğlu S, Adcock TAA, Houlsby GT, Draper S, Borthwick AGL. Tidal stream energy resource assessment of the Anglesey Skerries. Int J Mar Energ 2013; 3−4: e98−111.

[30] Neill SP, Jordan JR, Couch SJ. Impact of tidal energy converter (TEC) arrays on the dynamics of headland sand banks. Renew Energ 2012; 37(1): 387−97. link1

[31] BBC News. Largest tidal power device unveiled [Internet]. 2010Aug12 [cited 2016Feb20]. Available from: http://www.bbc.co.uk/news/uk-scotland-highlands-islands-10942856.

[32] Snieckus D. Atlantis’ Solon-K turbine emerges out of a high tide [Internet]. 2012Nov5 [cited 2016Feb20]. Available from: http://www.rechargenews.com/news/wave_tidal_hydro/article1279366.ece.

[33] Barker P. OpenHydro’s tidal technology is being tested at EMEC [Internet]. [cited 2016Feb20]. Available from: http://www.seavision.org.uk/article/new-technologies/openhydros-tidal-technology-being-tested-emec.

[34] Kepler Energy [Internet]. [cited 2016Feb20]. Available from: http://www.keplerenergy.co.uk//.

[35] Salter SH, Taylor JRM. Vertical-axis tidal-current generators and the Pentland Firth. P I Mech Eng A-J Pow 2007; 221(2): 181−99.

[36] Ocean Renewable Power Company (ORPC), USA. Chain of Horizontal Gorlov turbines being installed in Cobscook Bay, Maine, USA [Internet]. 2012Sep1 [cited 2016Feb20]. Available from: https://commons.wikimedia.org/wiki/File%3AChain_of_Horizontal_Gorlov_Turbines_in_Maine.png.

[37] BioPower Systems. bioSTREAMTM [Internet]. San Francisco: BPS Energy Inc.; c2013 [cited 2016Feb20]. Available from: http://www.biopowersystems.com/biostream.html.

[38] Minesto. Technology development [Internet]. [cited 2016Feb20]. Available from: http://minesto.com/technology-development/.

[39] EMEC. Tidal devices [Internet]. Stromness: European Marine Energy Centre (EMEC) Ltd.; c2016 [cited 2016Feb20]. Available from: http://www.emec.org.uk/marine-energy/tidal-devices/.

[40] Lewis MJ, Neill SP, Hashemi MR, Reza M. Realistic wave conditions and their influence on quantifying the tidal stream energy resource. Appl Energ 2014; 136: 495−508. link1

[41] Szondy D. Kepler Energy reveals plans for tidal energy scheme in Bristol Channel [Internet]. 2015Jul5 [cited 2016Feb20]. Available from: http://www.gizmag.com/kepler-energy-tidal-energy-fence-bristol-channel/38148/.

[42] EMEC. Blog: Atlantis resources testing next generation tidal turbine power train with ORE Catapult [Internet]. 2016Jan8 [cited 2016Feb20]. Available from: http://www.emec.org.uk/blog-atlantis-resources-testing-next-generation-tidal-turbine-power-train-with-ore-catapult/.

[43] Boyle G. Renewable energy: power for a sustainable future. 3rd ed. Oxford: Oxford University Press; 2012.

[44] Xia J, Falconer RA, Lin B, Tan G. Estimation of annual energy output from a tidal barrage using two different methods. Appl Energ 2012; 93: 327−36. link1

[45] Waters S, Aggidis G. Tidal range technologies and state of the art in review. Renew Sust Energ Rev 2016; 59: 514−29. link1

[46] Edinburgh Wave Power Group [Internet]. 2009Dec11 [cited 2016Feb20]. Available from: http://www.homepages.ed.ac.uk/v1ewaveg/.

[47] Pelamis Wave Energy Converter [Internet]. San Francisco: Wikimedia Foundation, Inc. 2015Oct27 [cited 2016Feb20]. Available from: https://en.wikipedia.org/wiki/Pelamis_Wave_Energy_Converter.

[48] OpenEI. Marine and hydrokinetic technology glossary [Internet]. [cited 2016Feb20]. Available from: http://en.openei.org/wiki/Marine_and_Hydrokinetic_Technology_Glossary.

[49] Katofsky RE. Ocean energy: technology basics [Internet]. 2008Jun1 [cited 2016Feb20]. Available from: http://www.renewableenergyfocus.com/view/3335/ocean-energy-technology-basics/.

[50] Manchester Bobber wave power [Internet]. UK: REUK; c2006-16. 2015Dec18 [cited 2016Jan29]. Available from: http://www.reuk.co.uk/Manchester-Bobber-Wave-Power.htm.

[51] Archimedes Wave Swing machines [Internet]. UK: REUK; c2006-16. 2015Dec18 [cited 2016Feb20]. Available from: http://www.reuk.co.uk/Archimedes-Wave-Swing-Machines.htm.

[52] Wave Dragon [Internet]. San Francisco: Wikimedia Foundation, Inc. 2015Mar15 [cited 2016Feb20]. Available from: https://en.wikipedia.org/wiki/Wave_Dragon.

[53] Ocean Power Technologies. File:Optbuoy.jpg [Internet]. 2011Apr1 [cited 2016Mar4]. Available from: https://commons.wikimedia.org/w/index.php?curid=19136668.

[54] Falcão AFO. Wave energy utilization: a review of the technologies. Renew Sust Energ Rev 2010; 14(3): 899−918. link1

[55] Khan J, Bhuyan GS. Ocean energy: global technology development status. Final Technical Report [Internet]. British Columbia: Powertech Labs Inc.; 2009Mar. Report No.: T0104. [cited 2016Mar4]. Available from: http://www.energybc.ca/cache/tidal/annex_1_doc_t0104-1.pdf.

[56] US DOE. Energy Efficiency and Renewable Energy Marine and Hydrokinetic Database. Washington, DC: Energy Efficiency and Renewable Energy US Department of Energy; 2010.

[57] Committee on America’s Energy Future, National Academy of Sciences, National Academy of Engineering, National Research Council. America’s energy future: technology and transformation: summary edition. Washington, DC: The National Academies Press; 2009.

[58] Forehand DIM, Kiprakis AE, Nambiar AJ, Wallace AR. A fully coupled wave-to-wire model of an array of wave energy converters. IEEE Trans Sustain Energ 2016; 7(1): 118−28. link1

[59] Cooper DJ, Meyer LJ, Varley RJ. OTEC commercialization challenges. In: Proceedings of Offshore Technology Conference; 2009May4−7; Houston, TX, USA; 2009.

[60] Loeb S, Norman RS. Osmotic power plants. Science 1975; 189(4203): 654−5. link1

[61] Lacey RE. Energy by reverse electrodialysis. Ocean Eng 1980; 7(1): 1−47. link1

[62] Schaetzle O, Buisman CJN. Salinity gradient energy: current state and new trends. Engineering 2015; 1(2): 164−6. link1

[63] Sayre R. Microalgae: the potential for carbon capture. Bioscience2010; 60(9): 722−7.

[64] Singh A, Nigam PS, Murphy JD. Mechanism and challenges in commercialisation of algal biofuels. Bioresour Technol 2011; 102(1): 26−34. link1

[65] Allen E, Browne J, Hynes S, Murphy JD. The potential of algae blooms to produce renewable gaseous fuel. Waste Manag 2013; 33(11): 2425−33. link1

[66] Ahern EP, Deane P, Persson T, Ó Gallachóir B, Murphy JD. A perspective on the potential role of renewable gas in a smart energy island system. Renew Energ 2015; 78: 648−56. link1

[67] Murphy JD, Drosg B, Allen E, Jerney J, Xia A, Herrmann C. A perspective on algal biogas. IEA Bioenergy; 2015.

[68] Kennedy CR, Leen SB, Ó’Brádaigh CM. A preliminary design methodology for fatigue life prediction of polymer composites for tidal turbine blades. P I Mech Eng L-J Mat 2012; 226(3): 203−18.

[69] Flanagan T, Maguire J, Ó’Brádaigh CM, Mayorga P, Doyle A. Smart affordable composite blades for tidal energy. In: Proceedings of the 11th European Wave and Tidal Energy Conference EWTEC2015; 2015Sep6−11; Nantes, France; 2015. p. 08A2-3-1−8.

[70] Bonar PAJ, Bryden IG, Borthwick AGL. Social and ecological impacts of marine energy development. Renew Sustain Energy Rev 2015; 47: 486−95. link1

[71] Rachels J, Rachels S. The elements of moral philosophy. 6th ed. Boston: McGraw-Hill; 2010.

[72] Directive 2014/89/EU of the European Parliament and of the Council of 23 July 2014 establishing a framework for maritime spatial planning. (2014).

[73] O’Hagan AM. A review of international consenting regimes for marine renewables: are we moving towards better practice? In: Proceedings of the 4th International Conference on Ocean Energy; 2012Oct17−19; Dublin, Ireland; 2012.

[74] Marine Scotland. Marine Scotland licensing and consents manual, covering marine renewables and offshore wind energy development. Hampshire: ABP Marine Environmental Research Ltd.; 2012Oct. Report No.: R.1957.

[75] von Neumann J, Morgenstern O. Theory of games and economic behaviour. 60th Anniversary Commemorative edition. Princeton: Princeton University Press; 2007.

[76] Mott MacDonald. UK electricity generation costs update [Internet]. Brighton: Mott MacDonald; 2010Jun [cited 2016Feb20]. Available from: https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/65716/71-uk-electricity-generation-costs-update-.pdf.

[77] Cost of electricity by source [Internet]. San Francisco: Wikimedia Foundation, Inc. [cited 2016Feb20]. Available from: https://en.wikipedia.org/wiki/Cost_of_electricity_by_source.

[78] Allan GJ, Gilmartin M, McGregor PG, Swales K. Levelised costs of wave and tidal energy in the UK: cost competitiveness and the importance of “banded” renewables obligation certificates. Energ Policy 2011; 39(1): 23−39. link1

[79] Wu H, Darton RC, Borthwick AGL, Ni JR. Defining and measuring river basin sustainability: a case study of the Yellow River. In: Brebbia CA, editor Proceedings of the 8th International Conference on River Basin Management; 2015Jun17−19; A Coruña, Spain; 2015.

[80] Chee Tahir A, Darton RC. The Process Analysis Method of selecting indicators to quantify the sustainability performance of a business operation. J Clean Prod 2010; 18(16−17): 1598−607. link1

Related Research