Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2016, Volume 2, Issue 1 doi: 10.1016/J.ENG.2016.01.027

Tumor Molecular Imaging with Nanoparticles

a. Molecular Imaging Program at Stanford, Department of Radiology, Stanford University, Stanford, CA 94305, USA
b. Molecular Imaging Research Center of Harbin Medical University, Harbin 150001, China
c. TOF-PET/CT/MR Center, the Fourth Hospital of Harbin Medical University, Harbin 150001, China
d. Departments of Bioengineering & Materials Science and Engineering, Bio-X Program, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA 94305, USA

Received: 2017-01-05 Revised: 2017-03-07 Accepted: 2017-03-09 Available online: 2016-03-31

Next Previous

Abstract

Molecular imaging (MI) can provide not only structural images using traditional imaging techniques but also functional and molecular information using many newly emerging imaging techniques. Over the past decade, the utilization of nanotechnology in MI has exhibited many significant advantages and provided new opportunities for the imaging of living subjects. It is expected that multimodality nanoparticles (NPs) can lead to precise assessment of tumor biology and the tumor microenvironment. This review addresses topics related to engineered NPs and summarizes the recent applications of these nanoconstructs in cancer optical imaging, ultrasound, photoacoustic imaging, magnetic resonance imaging (MRI), and radionuclide imaging. Key challenges involved in the translation of NPs to the clinic are discussed.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

References

[ 1 ] Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin 2015; 65(2): 87−108. link1

[ 2 ] Yu S, Yang CS, Li J, You W, Chen J, Cao Y, Cancer prevention research in China. Cancer Prev Res (Phila)2015; 8(8): 662−74. link1

[ 3 ] Adams JY, Johnson M, Sato M, Berger F, Gambhir SS, Carey M, Visualization of advanced human prostate cancer lesions in living mice by a targeted gene transfer vector and optical imaging. Nat Med 2002; 8(8): 891−7.

[ 4 ] Massoud TF, Gambhir SS. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 2003; 17(5): 545−80. link1

[ 5 ] James ML, Gambhir SS. A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev 2012; 92(2): 897−965. link1

[ 6 ] Koo H, Huh MS, Sun IC, Yuk SH, Choi K, Kim K, In vivo targeted delivery of nanoparticles for theranosis. Acc Chem Res 2011; 44(10): 1018−28. link1

[ 7 ] Wiwanitkit V. Glomerular pore size corresponding to albumin molecular size, an explanation for underlying structural pathology leading to albuminuria at nanolevel. Ren Fail 2006; 28(1): 101. link1

[ 8 ] Ullman EF, Schwarzberg M, Rubenstein KE. Fluorescent excitation transfer immunoassay. A general method for determination of antigens. J Biol Chem 1976; 251(14): 4172−8.

[ 9 ] Heath JR, Davis ME. Nanotechnology and cancer. Annu Rev Med 2008; 59: 251−65.

[10] Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 2005; 5(3): 161−71. link1

[11] Lammers T. Drug delivery research in Europe. J Control Release 2012; 161(2): 151. link1

[12] Brambilla D, Luciani P, Leroux JC. Breakthrough discoveries in drug delivery technologies: the next 30 years. J Control Release 2014; 190: 9−14. link1

[13] Taurin S, Nehoff H, Greish K. Anticancer nanomedicine and tumor vascular permeability; Where is the missing link? J Control Release 2012; 164(3): 265−75. link1

[14] Maeda H, Nakamura H, Fang J. The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev 2013; 65(1): 71−9. link1

[15] Altundag K, Dede DS, Purnak T. Albumin-bound paclitaxel (ABI-007; Abraxane) in the management of basal-like breast carcinoma. J Clin Pathol 2007; 60(8): 958.

[16] Chakravarthy AB, Kelley MC, McLaren B, Truica CI, Billheimer D, Mayer IA, Neoadjuvant concurrent paclitaxel and radiation in stage II/III breast cancer. Clin Cancer Res 2006; 12(5): 1570−6. link1

[17] Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 2000; 65(1−2): 271−84. link1

[18] Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 1986; 46(12 Pt 1): 6387−92.

[19] Maeda H. Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv Drug Deliv Rev 2015; 91: 3−6. link1

[20] Al-Jamal WT, Kostarelos K. Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine. Acc Chem Res 2011; 44(10): 1094−104. link1

[21] Ambrogio MW, Thomas CR, Zhao YL, Zink JI, Stoddart JF. Mechanized silica nanoparticles: a new frontier in theranostic nanomedicine. Acc Chem Res 2011; 44(10): 903−13. link1

[22] Bardhan R, Lal S, Joshi A, Halas NJ. Theranostic nanoshells: from probe design to imaging and treatment of cancer. Acc Chem Res 2011; 44(10): 936−46. link1

[23] Ho D, Sun X, Sun S. Monodisperse magnetic nanoparticles for theranostic applications. Acc Chem Res 2011; 44(10): 875−82. link1

[24] Thakor AS, Gambhir SS. Nanooncology: the future of cancer diagnosis and therapy. CA Cancer J Clin 2013; 63(6): 395−418. link1

[25] Piner RD, Zhu J, Xu F, Hong S, Mirkin CA. “Dip-Pen” nanolithography. Science 1999; 283(5402): 661−3. link1

[26] Canelas DA, Herlihy KP, DeSimone JM. Top-down particle fabrication: control of size and shape for diagnostic imaging and drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2009; 1(4): 391−404. link1

[27] Key J, Leary JF. Nanoparticles for multimodal in vivo imaging in nanomedicine. Int J Nanomedicine 2014; 9:711−26.

[28] He X, Wang K, Cheng Z. In vivo near-infrared fluorescence imaging of cancer with nanoparticle-based probes. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2010; 2(4): 349−66. link1

[29] He X, Gao J, Gambhir SS, Cheng Z. Near-infrared fluorescent nanoprobes for cancer molecular imaging: status and challenges. Trends Mol Med 2010; 16(12): 574−83. link1

[30] Alivisatos P. The use of nanocrystals in biological detection. Nat Biotechnol 2004; 22(1): 47−52. link1

[31] Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005; 307(5709): 538−44. link1

[32] Medintz IL, Uyeda HT, Goldman ER, Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 2005; 4(6): 435−46. link1

[33] Gao J, Chen K, Luong R, Bouley DM, Mao H, Qiao T, A novel clinically translatable fluorescent nanoparticle for targeted molecular imaging of tumors in living subjects. Nano Lett 2012; 12(1): 281−6. link1

[34] Smith BR, Cheng Z, De A, Koh AL, Sinclair R, Gambhir SS. Real-time intravital imaging of RGD-quantum dot binding to luminal endothelium in mouse tumor neovasculature. Nano Lett 2008; 8(9): 2599−606. link1

[35] Cai W, Hsu AR, Li ZB, Chen X. Are quantum dots ready for in vivo imaging in human subjects? Nanoscale Res Lett 2007; 2(6): 265−81. link1

[36] Schipper ML, Cheng Z, Lee SW, Bentolila LA, Iyer G, Rao J, microPET-based biodistribution of quantum dots in living mice. J Nucl Med 2007; 48(9): 1511−8. link1

[37] Schipper ML, Iyer G, Koh AL, Cheng Z, Ebenstein Y, Aharoni A, Particle size, surface coating, and PEGylation influence the biodistribution of quantum dots in living mice. Small 2009; 5(1): 126−34. link1

[38] Gao J, Chen K, Xie R, Xie J, Lee S, Cheng Z, Ultrasmall near-infrared non-cadmium quantum dots for in vivo tumor imaging. Small 2010; 6(2): 256−61. link1

[39] Gao J, Chen K, Miao Z, Ren G, Chen X, Gambhir SS, Affibody-based nanoprobes for HER2-expressing cell and tumor imaging. Biomaterials 2011; 32(8): 2141−8. link1

[40] DeCoste SD, Farinelli W, Flotte T, Anderson RR. Dye-enhanced laser welding for skin closure. Lasers Surg Med 1992; 12(1): 25−32. link1

[41] Gianella A, Jarzyna PA, Mani V, Ramachandran S, Calcagno C, Tang J, Multifunctional nanoemulsion platform for imaging guided therapy evaluated in experimental cancer. ACS Nano 2011; 5(6): 4422−33. link1

[42] Santra S, Kaittanis C, Grimm J, Perez JM. Drug/dye-loaded, multifunctional iron oxide nanoparticles for combined targeted cancer therapy and dual optical/magnetic resonance imaging. Small 2009; 5(16): 1862−8. link1

[43] Yan X, Niu G, Lin J, Jin AJ, Hu H, Tang Y, Enhanced fluorescence imaging guided photodynamic therapy of sinoporphyrin sodium loaded graphene oxide. Biomaterials 2015; 42: 94−102. link1

[44] Yan X, Hu H, Lin J, Jin AJ, Niu G, Zhang S, Optical and photoacoustic dual-modality imaging guided synergistic photodynamic/photothermal therapies. Nanoscale 2015; 7(6): 2520−6. link1

[45] Luo S, Zhang E, Su Y, Cheng T, Shi C. A review of NIR dyes in cancer targeting and imaging. Biomaterials 2011; 32(29): 7127−38. link1

[46] Liu H, Zhang X, Xing B, Han P, Gambhir SS, Cheng Z. Radiation-luminescence-excited quantum dots for in vivo multiplexed optical imaging. Small 2010; 6(10): 1087−91. link1

[47] Yang Y, Shao Q, Deng R, Wang C, Teng X, Cheng K, In vitro and in vivo uncaging and bioluminescence imaging by using photocaged upconversion nanoparticles. Angew Chem Int Ed Engl 2012; 51(13): 3125−9. link1

[48] Mitchell GS, Gill RK, Boucher DL, Li C, Cherry SR. In vivo Cerenkov luminescence imaging: a new tool for molecular imaging. Philos Trans A Math Phys Eng Sci 2011; 369(1955): 4605−19. link1

[49] Carpenter CM, Sun C, Pratx G, Rao R, Xing L. Hybrid x-ray/optical luminescence imaging: characterization of experimental conditions. Med Phys 2010; 37(8): 4011−8. link1

[50] Pratx G, Carpenter CM, Sun C, Rao RP, Xing L. Tomographic molecular imaging of x-ray-excitable nanoparticles. Opt Lett 2010; 35(20): 3345−7. link1

[51] Pratx G, Carpenter CM, Sun C, Xing L. X-ray luminescence computed tomography via selective excitation: a feasibility study. IEEE Trans Med Imaging 2010; 29(12): 1992−9. link1

[52] Sun C, Pratx G, Carpenter CM, Liu H, Cheng Z, Gambhir SS, Synthesis and radioluminescence of PEGylated Eu(3+) -doped nanophosphors as bioimaging probes. Adv Mater 2011; 23(24): H195−9. link1

[53] Keren S, Zavaleta C, Cheng Z, de la Zerda A, Gheysens O, Gambhir SS. Noninvasive molecular imaging of small living subjects using Raman spectroscopy. Proc Natl Acad Sci USA 2008; 105(15): 5844−9. link1

[54] Zavaleta CL, Hartman KB, Miao Z, James ML, Kempen P, Thakor AS, Preclinical evaluation of Raman nanoparticle biodistribution for their potential use in clinical endoscopy imaging. Small 2011; 7(15): 2232−40. link1

[55] Jokerst JV, Miao Z, Zavaleta C, Cheng Z, Gambhir SS. Affibody-functionalized gold-silica nanoparticles for Raman molecular imaging of the epidermal growth factor receptor. Small 2011; 7(5): 625−33. link1

[56] Grinvald A, Lieke E, Frostig RD, Gilbert CD, Wiesel TN. Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature 1986; 324(6095): 361−4. link1

[57] He Y, Tang Z, Chen Z, Wan W, Li J. A novel photoacoustic tomography based on a time-resolved technique and an acoustic lens imaging system. Phys Med Biol 2006; 51(10): 2671−80. link1

[58] Wang LV, Hu S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science 2012; 335(6075): 1458−62. link1

[59] Fan Q, Cheng K, Yang Z, Zhang R, Yang M, Hu X, Perylene-diimide-based nanoparticles as highly efficient photoacoustic agents for deep brain tumor imaging in living mice. Adv Mater 2015; 27(5): 843−7. link1

[60] Bianco A, Kostarelos K, Prato M. Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 2005; 9(6): 674−9. link1

[61] Liu Z, Cai W, He L, Nakayama N, Chen K, Sun X, In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat Nanotechnol 2007; 2(1): 47−52. link1

[62] De la Zerda A, Zavaleta C, Keren S, Vaithilingam S, Bodapati S, Liu Z, Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat Nanotechnol 2008; 3(9): 557−62. link1

[63] De la Zerda A, Liu Z, Bodapati S, Teed R, Vaithilingam S, Khuri-Yakub BT, Ultrahigh sensitivity carbon nanotube agents for photoacoustic molecular imaging in living mice. Nano Lett 2010; 10(6): 2168−72. link1

[64] Ren G, Miao Z, Liu H, Jiang L, Limpa-Amara N, Mahmood A, Melanin-targeted preclinical PET imaging of melanoma metastasis. J Nucl Med 2009; 50(10): 1692−9. link1

[65] Cheng Z, Mahmood A, Li H, Davison A, Jones AG. [99mTcOAADT]-(CH2)2-NEt2: a potential small-molecule single-photon emission computed tomography probe for imaging metastatic melanoma. Cancer Res 2005; 65(12): 4979−86. link1

[66] Zhang R, Fan Q, Yang M, Cheng K, Lu X, Zhang L, Engineering melanin nanoparticles as an efficient drug-delivery system for imaging-guided chemotherapy. Adv Mater 2015; 27(34): 5063−9. link1

[67] Yang M, Fan Q, Zhang R, Cheng K, Yan J, Pan D, Dragon fruit-like biocage as an iron trapping nanoplatform for high efficiency targeted cancer multimodality imaging. Biomaterials 2015; 69: 30−7. link1

[68] Bloch SH, Dayton PA, Ferrara KW. Targeted imaging using ultrasound contrast agents. Progess and opportunities for clinical and research applications. IEEE Eng Med Biol Mag 2004; 23(5): 18−29.

[69] Liu R, Tian B, Gearing M, Hunter S, Ye K, Mao Z. Cdk5-mediated regulation of the PIKE-A-Akt pathway and glioblastoma cell invasion. Proc Natl Acad Sci USA 2008; 105(21): 7570−5. link1

[70] Zhou J, Patel TR, Sirianni RW, Strohbehn G, Zheng MQ, Duong N, Highly penetrative, drug-loaded nanocarriers improve treatment of glioblastoma. Proc Natl Acad Sci USA 2013; 110(29): 11751−6. link1

[71] Kiessling F, Huppert J, Zhang C, Jayapaul J, Zwick S, Woenne EC, RGD-labeled USPIO inhibits adhesion and endocytotic activity of ανβ3-integrin-expressing glioma cells and only accumulates in the vascular tumor compartment. Radiology 2009; 253(2): 462−9. link1

[72] Anderson CR, Hu X, Zhang H, Tlaxca J, Declèves AE, Houghtaling R, Ultrasound molecular imaging of tumor angiogenesis with an integrin targeted microbubble contrast agent. Invest Radiol 2011; 46(4): 215−24. link1

[73] Yan F, Xu X, Chen Y, Deng Z, Liu H, Xu J, A lipopeptide-based ανβ3 integrin-targeted ultrasound contrast agent for molecular imaging of tumor angiogenesis. Ultrasound Med Biol 2015; 41(10): 2765−73. link1

[74] Willmann JK, Kimura RH, Deshpande N, Lutz AM, Cochran JR, Gambhir SS. Targeted contrast-enhanced ultrasound imaging of tumor angiogenesis with contrast microbubbles conjugated to integrin-binding knottin peptides. J Nucl Med 2010; 51(3): 433−40. link1

[75] Willmann JK, Lutz AM, Paulmurugan R, Patel MR, Chu P, Rosenberg J, Dual-targeted contrast agent for US assessment of tumor angiogenesis in vivo. Radiology 2008; 248(3): 936−44. link1

[76] Chavanpatil MD, Khdair A, Panyam J. Nanoparticles for cellular drug delivery: mechanisms and factors influencing delivery. J Nanosci Nanotechnol 2006; 6(9−10): 2651−63. link1

[77] Shamsi K, Balzer T, Saini S, Ros PR, Nelson RC, Carter EC, Superparamagnetic iron oxide particles (SH U 555 A): evaluation of efficacy in three doses for hepatic MR imaging. Radiology 1998; 206(2): 365−71. link1

[78] Reimer P, Jähnke N, Fiebich M, Schima W, Deckers F, Marx C, Hepatic lesion detection and characterization: value of nonenhanced MR imaging, superparamagnetic iron oxide-enhanced MR imaging, and spiral CT-ROC analysis. Radiology 2000; 217(1): 152−8. link1

[79] Bu L, Xie J, Chen K, Huang J, Aguilar ZP, Wang A, Assessment and comparison of magnetic nanoparticles as MRI contrast agents in a rodent model of human hepatocellular carcinoma. Contrast Media Mol Imaging 2012; 7(4): 363−72. link1

[80] de Marco G, Bogdanov A, Marecos E, Moore A, Simonova M, Weissleder R. MR imaging of gene delivery to the central nervous system with an artificial vector. Radiology 1998; 208(1): 65−71. link1

[81] Gupta AK, Curtis AS. Surface modified superparamagnetic nanoparticles for drug delivery: interaction studies with human fibroblasts in culture. J Mater Sci Mater Med 2004; 15(4): 493−6. link1

[82] Akbarzadeh A, Samiei M, Davaran S. Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett 2012; 7(1): 144. link1

[83] Thorek DL, Chen AK, Czupryna J, Tsourkas A. Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng 2006; 34(1): 23−38. link1

[84] Cheng K, Yang M, Zhang R, Qin C, Su X, Cheng Z. Hybrid nanotrimers for dual T1 and T2-weighted magnetic resonance imaging. ACS Nano 2014; 8(10): 9884−96. link1

[85] Yoffe S, Leshuk T, Everett P, Gu F. Superparamagnetic iron oxide nanoparticles (SPIONs): synthesis and surface modification techniques for use with MRI and other biomedical applications. Curr Pharm Des 2013; 19(3): 493−509. link1

[86] Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005; 26(18): 3995−4021. link1

[87] Yu MK, Jeong YY, Park J, Park S, Kim JW, Min JJ, Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angew Chem Int Ed Engl 2008; 47(29): 5362−5. link1

[88] Phelps ME, Hoffman EJ, Huang SC, Ter-Pogossian MM. Effect of positron range on spatial resolution. J Nucl Med 1975; 16(7): 649−52.

[89] Shokeen M, Anderson CJ. Molecular imaging of cancer with copper-64 radiopharmaceuticals and positron emission tomography (PET). Acc Chem Res 2009; 42(7): 832−41. link1

[90] Cutler CS, Hennkens HM, Sisay N, Huclier-Markai S, Jurisson SS. Radiometals for combined imaging and therapy. Chem Rev 2013; 113(2): 858−83. link1

[91] Wadas TJ, Wong EH, Weisman GR, Anderson CJ. Coordinating radiometals of copper, gallium, indium, yttrium, and zirconium for PET and SPECT imaging of disease. Chem Rev 2010; 110(5): 2858−902. link1

[92] Cai W, Chen K, Li ZB, Gambhir SS, Chen X. Dual-function probe for PET and near-infrared fluorescence imaging of tumor vasculature. J Nucl Med 2007; 48(11): 1862−70. link1

[93] Kirchner C, Liedl T, Kudera S, Pellegrino T, Muñoz Javier A, Gaub HE, Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 2005; 5(2): 331−8. link1

[94] Cai W, Shin DW, Chen K, Gheysens O, Cao Q, Wang SX, Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett 2006; 6(4): 669−76. link1

[95] Chen K, Li ZB, Wang H, Cai W, Chen X. Dual-modality optical and positron emission tomography imaging of vascular endothelial growth factor receptor on tumor vasculature using quantum dots. Eur J Nucl Med Mol Imaging 2008; 35(12): 2235−44. link1

[96] Nahrendorf M, Zhang H, Hembrador S, Panizzi P, Sosnovik DE, Aikawa E, Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis. Circulation 2008; 117(3): 379−87. link1

[97] Nahrendorf M, Keliher E, Marinelli B, Waterman P, Feruglio PF, Fexon L, Hybrid PET-optical imaging using targeted probes. Proc Natl Acad Sci USA 2010; 107(17): 7910−5. link1

[98] Yang X, Hong H, Grailer JJ, Rowland IJ, Javadi A, Hurley SA, cRGD-functionalized, DOX-conjugated, and 64Cu-labeled superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging. Biomaterials 2011; 32(17): 4151−60. link1

[99] Liu TW, Macdonald TD, Jin CS, Gold JM, Bristow RG, Wilson BC, Inherently multimodal nanoparticle-driven tracking and real-time delineation of orthotopic prostate tumors and micrometastases. ACS Nano 2013; 7(5): 4221−32. link1

[100] Chen F, Hong H, Shi S, Goel S, Valdovinos HF, Hernandez R, Engineering of hollow mesoporous silica nanoparticles for remarkably enhanced tumor active targeting efficacy. Sci Rep 2014; 4: 5080.

[101] Verel I, Visser GW, Boellaard R, Stigter-van Walsum M, Snow GB, van Dongen GA. 89Zr immuno-PET: comprehensive procedures for the production of 89Zr-labeled monoclonal antibodies. J Nucl Med 2003; 44(8): 1271−81.

[102] Holland JP, Sheh Y, Lewis JS. Standardized methods for the production of high specific-activity zirconium-89. Nucl Med Biol 2009; 36(7): 729−39. link1

[103] Holland JP, Williamson MJ, Lewis JS. Unconventional nuclides for radiopharmaceuticals. Mol Imaging 2010; 9(1): 1−20.

[104] Holland JP, Caldas-Lopes E, Divilov V, Longo VA, Taldone T, Zatorska D, Measuring the pharmacodynamic effects of a novel Hsp90 inhibitor on HER2/neu expression in mice using 89Zr-DFO-trastuzumab. PLoS ONE 2010; 5(1): e8859. link1

[105] Holland JP, Divilov V, Bander NH, Smith-Jones PM, Larson SM, Lewis JS. 89Zr-DFO-J591 for immunoPET of prostate-specific membrane antigen expression in vivo. J Nucl Med 2010; 51(8): 1293−300. link1

[106] Ruggiero A, Villa CH, Holland JP, Sprinkle SR, May C, Lewis JS, Imaging and treating tumor vasculature with targeted radiolabeled carbon nanotubes. Int J Nanomedicine 2010; 5: 783−802.

[107] Lee J, Lee TS, Ryu J, Hong S, Kang M, Im K, RGD peptide-conjugated multimodal NaGdF4:Yb3+/Er3+ nanophosphors for upconversion luminescence, MR, and PET imaging of tumor angiogenesis. J Nucl Med 2013; 54(1): 96−103. link1

[108] Lijowski M, Caruthers S, Hu G, Zhang H, Scott MJ, Williams T, High sensitivity: high-resolution SPECT-CT/MR molecular imaging of angiogenesis in the Vx2 model. Invest Radiol 2009; 44(1): 15−22. link1

[109] Hu G, Lijowski M, Zhang H, Partlow KC, Caruthers SD, Kiefer G, Imaging of Vx-2 rabbit tumors with ανβ3-integrin-targeted 111In nanoparticles. Int J Cancer 2007; 120(9): 1951−7. link1

[110] Yang M, Cheng K, Qi S, Liu H, Jiang Y, Jiang H, Affibody modified and radiolabeled gold-iron oxide hetero-nanostructures for tumor PET, optical and MR imaging. Biomaterials 2013; 34(11): 2796−806. link1

Related Research