Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2016, Volume 2, Issue 1 doi: 10.1016/J.ENG.2016.01.028

Application of Biomaterials in Cardiac Repair and Regeneration

a. Institute of Medical Science & Department of Surgery, Division of Cardiovascular Surgery, University of Toronto, Toronto, ON M5G 2M9, Canada
b. Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150001, China
c. Division of Cardiovascular Surgery, Toronto General Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada

Received: 2015-11-24 Revised: 2017-03-07 Accepted: 2017-03-09 Available online: 2016-03-31

Next Previous

Abstract

Cardiovascular disease is a leading cause of death throughout the world. The demand for new therapeutic interventions is increasing. Although pharmacological and surgical interventions dramatically improve the quality of life of cardiovascular disease patients, cheaper and less invasive approaches are always preferable. Biomaterials, both natural and synthetic, exhibit great potential in cardiac repair and regeneration, either as a carrier for drug delivery or as an extracellular matrix substitute scaffold. In this review, we discuss the current treatment options for several cardiovascular diseases, as well as types of biomaterials that have been investigated as potential therapeutic interventions for said diseases. We especially highlight investigations into the possible use of conductive polymers for correcting ischemic heart disease-induced conduction abnormalities, and the generation of biological pacemakers to improve the conduction pathway in heart block.

Figures

Fig. 1

References

[ 1 ] Public Health Agency of Canada [Internet]. Economic burden of illness in Canada, 2005−2008. [2014-06-20]. Available from: http://www.phac-aspc.gc.ca/publicat/ebic-femc/2005-2008/index-eng.php.

[ 2 ] Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, ; American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Executive summary: heart disease and stroke statistics−2014 update: a report from the American Heart Association. Circulation 2014; 129(3): 399−410.

[ 3 ] Creaser JW, DePasquale EC, Vandenbogaart E, Rourke D, Chaker T, Fonarow GC. Team-based care for outpatients with heart failure. Heart Fail Clin 2015; 11(3): 379−405. link1

[ 4 ] Heidenreich P. Heart failure prevention and team-based interventions. Heart Fail Clin 2015; 11(3): 349−58. link1

[ 5 ] Larsen PM, Teerlink JR. Team-based care for patients hospitalized with heart failure. Heart Fail Clin 2015; 11(3): 359−70. link1

[ 6 ] Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med 2015; 372(9): 793−5. link1

[ 7 ] Zhang J, Wilson GF, Soerens AG, Koonce CH, Yu J, Palecek SP, Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ Res 2009; 104(4): e30−41. link1

[ 8 ] Masumoto H, Ikuno T, Takeda M, Fukushima H, Marui A, Katayama S, Human iPS cell-engineered cardiac tissue sheets with cardiomyocytes and vascular cells for cardiac regeneration. Sci Rep 2014; 4: 6716. link1

[ 9 ] Ivashchenko CY, Pipes GC, Lozinskaya IM, Lin ZJ, Xu XP, Needle S, Human-induced pluripotent stem cell-derived cardiomyocytes exhibit temporal changes in phenotype. Am J Physiol Heart Circ Physiol 2013; 305(6): H913−22. link1

[10] Miyagi Y, Chiu LL, Cimini M, Weisel RD, Radisic M, Li RK. Biodegradable collagen patch with covalently immobilized VEGF for myocardial repair. Biomaterials 2011; 32(5): 1280−90. link1

[11] Segers VF, Lee RT. Biomaterials to enhance stem cell function in the heart. Circ Res 2011; 109(8): 910−22. link1

[12] Cheng K, Malliaras K, Shen DL, Tseliou E, Ionta V, Smith J, Intramyocardial injection of platelet gel promotes endogenous repair and augments cardiac function in rats with myocardial infarction. J Am Coll Cardiol 2012; 59(3): 256−64. link1

[13] Ungerleider JL, Christman KL. Concise review: injectable biomaterials for the treatment of myocardial infarction and peripheral artery disease: translational challenges and progress. Stem Cells Transl Med 2014; 3(9): 1090−9. link1

[14] Shen DL, Wang XF, Zhang L, Zhao XY, Li JY, Cheng K, The amelioration of cardiac dysfunction after myocardial infarction by the injection of keratin biomaterials derived from human hair. Biomaterials 2011; 32(35): 9290−9. link1

[15] de Zwaan C, Daemen MJ, Hermens WT. Mechanisms of cell death in acute myocardial infarction: pathophysiological implications for treatment. Neth Heart J. 2001; 9(1): 30−44.

[16] O’Gara PT, Kushner FG, Ascheim DD, Casey DE, Chung MK, de Lemos JA, ; American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 2013; 127(4): e362−425.

[17] Schächinger V, Erbs S, Elsasser A, Haberbosch W, Hambrecht R, Holschermann H; REPAIR-AMI Investigators. Improved clinical outcome after intracoronary administration of bone-marrow-derived progenitor cells in acute myocardial infarction: final 1-year results of the REPAIR-AMI trial. Eur Heart J 2006; 27(23): 2775−83. link1

[18] Wollert KC, Meyer GP, Lotz J, Ringes-Lichtenberg S, Lippolt P, Breidenbach C, Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 2004; 364(9429): 141−8. link1

[19] Caspi O, Huber I, Habib M, Arbel G, Gepstein A, Yankelson L, Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. J Am Coll Cardiol 2007; 50(19): 1884−93. link1

[20] Laflamme MA, Chen KY, Naumova A, Muskheli V, Fugate JA, Dupras SK, Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 2007; 25(9): 1015−24. link1

[21] Menasché P, Alfieri O, Janssens S, McKenna W, Reichenspumer H, Trinquart L, The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation 2008; 117(9): 1189−200. link1

[22] Menasché P. Skeletal myoblasts as a therapeutic agent. Prog Cardiovasc Dis 2007; 50(1): 7−17. link1

[23] Katritsis DG, Sotiropoulou PA, Karvouni E, Karabinos I, Korovesis S, Perez SA, Transcoronary transplantation of autologous mesenchymal stem cells and endothelial progenitors into infarcted human myocardium. Catheter Cardiovasc Interv 2005; 65(3): 321−9. link1

[24] Smith RR, Barile L, Cho HC, Leppo MK, Hare JM, Messina E, Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 2007; 115(7): 896−908. link1

[25] Bolli R, Chugh AR, D’Amario D, Loughran JH, Stoddard MF, Ikram S, Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet 2011; 78(9806): 1847−57.

[26] Hare JM, Fishman JE, Gerstenblith G, DiFede Velazquez DL, Zambrano JP, Suncion VY, Comparison of allogeneic vs autologous bone marrow−derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. JAMA 2012; 308(22): 2369−79. link1

[27] Chong JJ, Yang X, Don CW, Minami E, Liu YW, Weyers JJ, Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 2014; 510(7504): 273−77. link1

[28] Williams AR, Hatzistergos KE, Addicott B, McCall F, Carvalho D, Suncion V, Enhanced effect of human cardiac stem cells and bone marrow mesenchymal stem cells to reduce infarct size and restore cardiac function after myocardial infarction. Circulation 2013; 127(2): 213−23. link1

[29] Segers VF, Lee RT. Stem-cell therapy for cardiac disease. Nature 2008; 451(7181): 937−42. link1

[30] Hou D, Youssef EA, Brinton TJ, Zhang P, Rogers P, Price ET, Radiolabeled cell distribution after intramyocardial, intracoronary, and interstitial retrograde coronary venous delivery: implications for current clinical trials. Circulation 2005; 112(9 Suppl): I150−6.

[31] Siminiak T, Kalawski R, Fiszer D, Jerzykowska O, Rzezniczak J, Rozwadowska N, Autologous skeletal myoblast transplantation for the treatment of postinfarction myocardial injury: Phase I clinical study with 12 months of follow-up. Am Heart J 2004; 148(3): 531−7. link1

[32] Chang MG, Tung L, Sekar RB, Chang CY, Cysyk J, Dong P, Proarrhythmic potential of mesenchymal stem cell transplantation revealed in an in vitro coculture model. Circulation 2006; 113(15): 1832−41. link1

[33] Macia E, Boyden PA. Stem cell therapy is proarrhythmic. Circulation 2009; 119(13): 1814−23. link1

[34] Seliktar D. Designing cell-compatible hydrogels for biomedical applications. Science 2012; 336(6085): 1124−8. link1

[35] Prestwich GD. Hyaluronic acid-based clinical biomaterials derived for cell and molecule delivery in regenerative medicine. J Control Release 2011; 155(2): 193−9. link1

[36] Pascual-Gil S, Garbayo E, Díaz-Herráez P, Prosper F, Blanco-Prieto MJ. Heart regeneration after myocardial infarction using synthetic biomaterials. J Control Release 2015; 203: 23−38. link1

[37] Zammaretti P, Jaconi M. Cardiac tissue engineering: regeneration of the wounded heart. Curr Opin Biotechnol 2004; 15(5): 430−4. link1

[38] O’Brien FJ. Biomaterials & Scaffolds for tissue engineering. Mater Today 2011; 14(3): 88−95. link1

[39] Akhyari P, Fedak PW, Weisel RD, Lee TY, Verma S, Mickle DA, Mechanical stretch regimen enhances the formation of bioengineered autologous cardiac muscle grafts. Circulation 2002; 106(12 Suppl 1): I137−42. link1

[40] Zimmermann WH, Melnychenko I, Eschenhagen T. Engineered heart tissue for regeneration of diseased hearts. Biomaterials 2004; 25(9): 1639−47. link1

[41] Landa N, Miller L, Feinberg MS, Holbova R, Shachar M, Freeman I, Effect of injectable alginate implant on cardiac remodeling and function after recent and old infarcts in rat. Circulation 2008; 117(11): 1388−96. link1

[42] Ruvinov E, Cohen S. Alginate biomaterial for the treatment of myocardial infarction: progress, translational strategies, and clinical outlook: from ocean algae to patient bedside. Adv Drug Deliv Rev 2016; 96: 54−76. link1

[43] Liu Z, Wang H, Wang Y, Lin Q, Yao A, Cao F, The influence of chitosan hydrogel on stem cell engraftment, survival and homing in the ischemic myocardial microenvironment. Biomaterials 2012; 33(11): 3093−106. link1

[44] Christman KL, Fok HH, Sievers RE, Fang Q, Lee RJ. Fibrin glue alone and skeletal myoblasts in a fibrin scaffold preserve cardiac function after myocardial infarction. Tissue Eng 2004; 10(3−4): 403−9. link1

[45] Chang MY, Yang YJ, Chang CH, Tang AC, Liao WY, Cheng FY, Functionalized nanoparticles provide early cardioprotection after acute myocardial infarction. J Control Release 2013; 170(2): 287−94. link1

[46] Meng X, Stout DA, Sun L, Beingessner RL, Fenniri H, Webster TJ. Novel injectable biomimetic hydrogels with carbon nanofibers and self assembled rosette nanotubes for myocardial applications. J Biomed Mater Res A 2013; 101(4): 1095−102.

[47] Lakshmanan R, Krishnan UM, Sethuraman S. Polymeric scaffold aided stem cell therapeutics for cardiac muscle repair and regeneration. Macromol Biosci 2013; 13(9): 1119−34. link1

[48] Lam MT, Wu JC. Biomaterial applications in cardiovascular tissue repair and regeneration. Expert Rev Cardiovasc Ther 2012; 10(8): 1039−49. link1

[49] Serpooshan V, Zhao M, Metzler SA, Wei K, Shah PB, Wang A, The effect of bioengineered acellular collagen patch on cardiac remodeling and ventricular function post myocardial infarction. Biomaterials 2013; 34(36): 9048−55. link1

[50] Frederick JR, Fitzpatrick JR 3rd, McCormick RC, Harris DA, Kim AY, Muenzer JR, Stromal cell-derived factor-1 activation of tissue-engineered endothelial progenitor cell matrix enhances ventricular function after myocardial infarction by inducing neovasculogenesis. Circulation 2010; 122(11 Suppl): S107−17. link1

[51] Anitha A, Sowmya S, Sudheesh Kumar PT, Deepthi S, Chennazhi KP, Ehrlich H, Chitin and chitosan in selected biomedical applications. Prog Polym Sci 2014; 39(9): 1644−67. link1

[52] Song K, Qiao M, Liu T, Jiang B, Macedo HM, Ma X, Preparation, fabrication and biocompatibility of novel injectable temperature-sensitive chitosan/glycerophosphate/collagen hydrogels. J Mater Sci Mater Med 2010; 21(10): 2835−42. link1

[53] Roughley P, Hoemann C, DesRosiers E, Mwale F, Antoniou J, Alini M. The potential of chitosan-based gels containing intervertebral disc cells for nucleus pulposus supplementation. Biomaterials 2006; 27(3): 388−96. link1

[54] Bhattarai N, Gunn J, Zhang M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 2010; 62(1): 83−99. link1

[55] Miklas JW, Dallabrida SM, Reis LA, Ismail N, Rupnick M, Radisic M. QHREDGS enhances tube formation, metabolism and survival of endothelial cells in collagen-chitosan hydrogels. PLoS ONE 2013; 8(8): e72956. link1

[56] Chi NH, Yang MC, Chung TW, Chou NK, Wang SS. Cardiac repair using chitosan-hyaluronan/silk fibroin patches in a rat heart model with myocardial infarction. Carbohydr Polym 2013; 92(1): 591−7. link1

[57] Wee S, Gombotz WR. Protein release from alginate matrices. Adv Drug Deliv Rev 1998; 31(3): 267−85. link1

[58] Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Prog Polym Sci 2012; 37(1): 106−26. link1

[59] Deng B, Shen L, Wu Y, Shen Y, Ding X, Lu S, Delivery of alginate-chitosan hydrogel promotes endogenous repair and preserves cardiac function in rats with myocardial infarction. J Biomed Mater Res A 2015; 103(3): 907−18. link1

[60] Terashima M, Fujiwara S, Yaginuma GY, Takizawa K, Kaneko U, Meguro T. Outcome of percutaneous intrapericardial fibrin-glue injection therapy for left ventricular free wall rupture secondary to acute myocardial infarction. Am J Cardiol 2008; 101(4): 419−21. link1

[61] Iemura J, Oku H, Otaki M, Kitayama H, Inoue T, Kaneda T. Surgical strategy for left ventricular free wall rupture after acute myocardial infarction. Ann Thorac Surg 2001; 71(1): 201−4. link1

[62] Okonogi T, Otsuka Y, Saito T. Repaired left ventricular free wall rupture after acute myocardial infarction by percutaneous intrapericardial fibrin-glue injection therapy. J Invasive Cardiol 2013; 25(9): E186−7.

[63] Mukherjee S, Venugopal JR, Ravichandran R, Ramakrishna S, Raghunath M. Evaluation of the biocompatibility of PLACL/collagen nanostructured matrices with cardiomyocytes as a model for the regeneration of infarcted myocardium. Adv Funct Mater 2011; 21(12): 2291−300. link1

[64] Martins AM, Eng G, Caridade SG, Mano JF, Reis RL, Vunjak-Novakovic G. Electrically conductive chitosan/carbon scaffolds for cardiac tissue engineering. Biomacromolecules 2014; 15(2): 635−43. link1

[65] Zhou J, Chen J, Sun H, Qiu X, Mou Y, Liu Z, Engineering the heart: evaluation of conductive nanomaterials for improving implant integration and cardiac function. Sci Rep 2014; 4: 3733.

[66] French KM, Somasuntharam I, Davis ME. Self-assembling peptide-based delivery of therapeutics for myocardial infarction. Adv Drug Deliv Rev 2016; 96: 40−53. link1

[67] Davis ME, Motion JP, Narmoneva DA, Takahashi T, Hakuno D, Kamm RD, Injectable self-assembling peptide nanofibers create intramyocardial microenvironments for endothelial cells. Circulation 2005; 111(4): 442−50. link1

[68] Boopathy AV, Davis ME. Self-assembling peptide-based delivery of therapeutics for myocardial infarction. Methods Mol Bio 2014; 1141: 159−64. link1

[69] Tokunaga M, Liu ML, Nagai T, Iwanaga K, Matsuura K, Takahashi T, Implantation of cardiac progenitor cells using self-assembling peptide improves cardiac function after myocardial infarction. J Mol Cell Cardiol 2010; 49(6): 972−83. link1

[70] Hsieh PC, Davis ME, Gannon J, MacGillivray C, Lee RT. Controlled delivery of PDGF-BB for myocardial protection using injectable self-assembling peptide nanofibers. J Clin Invest 2006; 116(1): 237−48.

[71] McDevitt TC, Woodhouse KA, Hauschka SD, Murry CE, Stayton PS. Spatially organized layers of cardiomyocytes on biodegradable polyurethane films for myocardial repair. J Biomed Mater Res A 2003; 66(3): 586−95.

[72] Anker SD, Coats AJS, Cristian G, Dragomir D, Pusineri E, Piredda M, A prospective comparison of alginate-hydrogel with standard medical therapy to determine impact on functional capacity and clinical outcomes in patients with advanced heart failure (AUGMENT-HF trial). Eur Heart J 2015; 36(34): 2297−309. link1

[73] Mann DL, Lee RJ, Coats AJS, Neagoe G, Dragomir D, Pusineri E, One-year follow-up results from AUGMENT-HF: a multicentre randomized controlled clinical trial of the efficacy of left ventricular augmentation with Algisyl in the treatment of heart failure. Eur J Heart Fail 2015; 18(3): 314−25.

[74] Ghuran AV, Camm AJ. Ischaemic heart disease presenting as arrhythmias. Br Med Bull 2001; 59(1): 193−210. link1

[75] Benito B, Josephson ME. Ventricular tachycardia in coronary artery disease. Rev Esp Cardiol (Engl Ed)2012; 65(10): 939−55. [English Version] link1

[76] Myerburg RJ, Junttila MJ. Sudden cardiac death caused by coronary heart disease. Circulation 2012; 125(8): 1043−52. link1

[77] Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, ; WRITING GROUP MEMBERS; American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics−2010 update: a report from the American Heart Association. Circulation 2010; 121(7): e46−215. link1

[78] Yousuf O, Chrispin J, Tomaselli GF, Berger RD. Clinical management and prevention of sudden cardiac death. Circ Res 2015; 116(12): 2020−40. link1

[79] Khan IA. Clinical and therapeutic aspects of congenital and acquired long QT syndrome. Am J Med 2002; 112(1): 58−66. link1

[80] Noakes TD, Higginson L, Opie LH. Physical training increases ventricular fibrillation thresholds of isolated rat hearts during normoxia, hypoxia and regional ischemia. Circulation 1983; 67(1): 24−30. link1

[81] Lampert R, Joska T, Burg MM, Batsford WP, McPherson CA, Jain D. Emotional and physical precipitants of ventricular arrhythmia. Circulation 2002; 106(14): 1800−5. link1

[82] The Norwegian Multicenter Study Group. Timolol-induced reduction in mortality and reinfarction in patients surviving acute myocardial infarction. N Engl J Med 1981; 304(14): 801−7. link1

[83] Chen ZM, Pan HC, Chen YP, Peto R, Collins R, Jiang LX, ; COMMIT (ClOpidogrel and Metoprolol in Myocardial Infarction Trial) Collaborative Group. Early intravenous then oral metoprolol in 45,852 patients with acute myocardial infarction: randomised placebo-controlled trial. Lancet 2005; 366(9497): 1622−32.

[84] Goldenberg I, Gillespie J, Moss AJ, Hall WJ, Klein H, McNitt S, ; Executive Committee of the Multicenter Automatic Defibrillator Implantation Trial II. Long-term benefit of primary prevention with an implantable cardioverter-defibrillator: an extended 8-year follow-up study of the Multicenter Automatic Defibrillator Implantation Trial II. Circulation 2010; 122(13): 1265−71. link1

[85] Dorian P, Hohnloser SH, Thorpe KE, Roberts RS, Kuck KH, Gent M, Mechanisms underlying the lack of effect of implantable cardioverter-defibrillator therapy on mortality in high-risk patients with recent myocardial infarction: insights from the Defibrillation in Acute Myocardial Infarction Trial (DINAMIT). Circulation 2010; 122(25): 2645−52. link1

[86] Vogler J, Breithardt G, Eckardt L. Bradyarrhythmias and conduction blocks. Rev Esp Cardiol (Engl Ed)2012; 65(7): 656−67. [English Version] link1

[87] Laske T, Iaizzo P. The cardiac conduction system. In: Iaizzo PA, editors Handbook of cardiac anatomy, physiology, and devices. Totowa: Humana Press; 2005. p. 123−36.

[88] Finsterer J, Stöllberger C. Cardiac involvement in Becker muscular dystrophy. Can J Cardiol 2008; 24(10): 786−92. link1

[89] Altekin RE, Yanikoglu A, Ucar M, Ermis C. Complete AV block and cardiac syncope in a patient with Duchenne muscular dystrophy. J Cardiol Cases 2011; 3(2): e68−70. link1

[90] Lee JC, Seiler J, Blankstein R, Padera RF, Baughman KL, Tedrow UB. Images in cardiovascular medicine. Cardiac sarcoidosis presenting as heart block. Circulation 2009; 120(15): 1550−1. link1

[91] Banypersad SM, Moon JC, Whelan C, Hawkins PN, Wechalekar AD. Updates in cardiac amyloidosis: a review. J Am Heart Assoc 2012; 1(2): e000364.

[92] Singh SM, FitzGerald G, Yan AT, Brieger D, Fox KA, López-Sendón J, High-grade atrioventricular block in acute coronary syndromes: insights from the Global Registry of Acute Coronary Events. Eur Heart J 2015; 36(16): 976−83. link1

[93] Hreybe H, Saba S. Location of acute myocardial infarction and associated arrhythmias and outcome. Clin Cardiol 2009; 32(5): 274−7. link1

[94] Cho SW, Kang YJ, Kim TH, Cho SK, Hwang MW, Chang W, Primary cardiac lymphoma presenting with atrioventricular block. Korean Circ J 2010; 40(2): 94−8. link1

[95] Schaffer MS, Silka MJ, Ross BA, Kugler JD; Pediatric Electrophysiology Society. Inadvertent atrioventricular block during radiofrequency catheter ablation. Results of the Pediatric Radiofrequency Ablation Registry. Circulation 1996; 94(12): 3214−20. link1

[96] Belhassen B, Glick A, Rosso R, Michowitz Y, Viskin S. Atrioventricular block during radiofrequency catheter ablation of atrial flutter: incidence, mechanism, and clinical implications. Europace 2011; 13(7): 1009−14. link1

[97] Rardon DP, Miles WM, Zipes DP. Atrioventricular block and dissociation. In: Zipes DP, Jalife J, editors Cardiac electrophysiology: from cells to bedside. 2nd ed. Philadelphia: WB Saunders; 1995. p. 485−9.

[98] Issa Z, Miller JM, Zipes DP. Atrioventricular conduction abnormalities. In: Clinical arrhythmology and electrophysiology: a companion to Braunwald’s heart disease. Philadelphia: WB Saunders; 2008. p. 127−42.

[99] Barold SS, Hayes DL. Second-degree atrioventricular block: a reappraisal. Mayo Clin Proc 2001; 76(1): 44−57. link1

[100] Barold SS, Ilercil A, Leonelli F, Herweg B. First-degree atrioventricular block. Clinical manifestations, indications for pacing, pacemaker management & consequences during cardiac resynchronization. J Interv Card Electrophysiol 2006; 17(2): 139−52.

[101] Brignole M, Auricchio A, Baron-Esquivias G, Bordachar P, Boriani G, Breithardt OA, ; ESC Committee for Practice Guidelines (CPG); Document Reviewers. 2013 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy: the Task Force on cardiac pacing and resynchronization therapy of the European Society of Cardiology (ESC). Developed in collaboration with the European Heart Rhythm Association (EHRA). Eur Heart J 2013; 34(29): 2281−329. link1

[102] Stevenson WG, John RM. Ventricular arrhythmias in patients with implanted defibrillators. Circulation 2011; 124(16): e411−4. link1

[103] Miller JS. The 2000 Nobel Prize in Chemistry−a personal accolade. Chemphyschem 2000; 1(4): 229−30. link1

[104] Rivers TJ, Hudson TW, Schmidt CE. Synthesis of a novel, biodegradable electrically conducting polymer for biomedical applications. Adv Funct Mater 2002; 12(1): 33−7. link1

[105] Balint R, Cassidy NJ, Cartmell SH. Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomater 2014; 10(6): 2341−53. link1

[106] Guiseppi-Elie A. Electroconductive hydrogels: synthesis, characterization and biomedical applications. Biomaterials 2010; 31(10): 2701−16. link1

[107] Radisic M, Park H, Shing H, Consi T, Schoen FJ, Langer R, Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc Natl Acad Sci USA 2004; 101(52): 18129−34. link1

[108] Nakashima T, Ohkusa T, Okamoto Y, Yoshida M, Lee JK, Mizukami Y, Rapid electrical stimulation causes alterations in cardiac intercellular junction proteins of cardiomyocytes. Am J Physiol Heart Circ Physiol 2014; 306(9): H1324−33. link1

[109] George PM, Lyckman AW, LaVan DA, Hegde A, Leung Y, Avasare R, Fabrication and biocompatibility of polypyrrole implants suitable for neural prosthetics. Biomaterials 2005; 26(17): 3511−9. link1

[110] Zhang L, Stauffer WR, Jane EP, Sammak PJ, Cui XT. Enhanced differentiation of embryonic and neural stem cells to neuronal fates on laminin peptides doped polypyrrole. Macromol Biosci 2010; 10(12): 1456−64. link1

[111] Lundin V, Herland A, Berggren M, Jager EW, Teixeira AI. Control of neural stem cell survival by electroactive polymer substrates. PLoS ONE 2011; 6(4): e18624. link1

[112] Kai D, Prabhakaran MP, Jin G, Ramakrishna S. Polypyrrole-contained electrospun conductive nanofibrous membranes for cardiac tissue engineering. J Biomed Mater Res A 2011; 99(3): 376−85.

[113] Gelmi A, Zhang JB, Cieslar-Pobuda A, Ljunngren MK, Los MJ, Rafat M, Electroactive 3D materials for cardiac tissue engineering. In: Bar-Cohen Y, editor Proceedings of SPIE Volume 9430: Electroactive Polymer Actuators and Devices (EAPAD) 2015; 2015Mar9−12; San Diego, CA, USA. Bellingham: SPIE; 2015. p. 94301T.

[114] Mihardja SS, Sievers RE, Lee RJ. The effect of polypyrrole on arteriogenesis in an acute rat infarct model. Biomaterials 2008; 29(31): 4205−10. link1

[115] Witte KK, Pipes RR, Nanthakumar K, Parker JD. Biventricular pacemaker upgrade in previously paced heart failure patients−improvements in ventricular dyssynchrony. J Card Fail 2006; 12(3): 199−204. link1

[116] Cho HC, Marbán E. Biological therapies for cardiac arrhythmias: can genes and cells replace drugs and devices? Circ Res 2010; 106(4): 674−85. link1

[117] Berul CI, Cecchin F; American Heart Association; American College of Cardiology. Indications and techniques of pediatric cardiac pacing. Expert Rev Cardiovasc Ther 2003; 1(2): 165−76. link1

[118] Rosen MR, Brink PR, Cohen IS, Robinson RB. Cardiac pacing: from biological to electronic ... to biological? Circ Arrhythm Electrophysiol 2008; 1(1): 54−61. link1

[119] Munshi NV, Olson EN. Translational medicine. Improving cardiac rhythm with a biological pacemaker. Science 2014; 345(6194): 268−9. link1

[120] Rosen MR, Robinson RB, Brink PR, Cohen IS. The road to biological pacing. Nat Rev Cardiol 2011; 8(11): 656−6. link1

[121] Rosen AB, Kelly DJ, Schuldt AJ, Lu J, Potapova IA, Doronin SV, Finding fluorescent needles in the cardiac haystack: tracking human mesenchymal stem cells labeled with quantum dots for quantitative in vivo three-dimensional fluorescence analysis. Stem Cells 2007; 25(8): 2128−38. link1

[122] Proulx MK, Carey SP, Ditroia LM, Jones CM, Fakharzadeh M, Guyette JP, Fibrin microthreads support mesenchymal stem cell growth while maintaining differentiation potential. J Biomed Mater Res A 2011; 96(2): 301−12.

[123] Suarez SL, Rane AA, Muñoz A, Wright AT, Zhang SX, Braden RL, Intramyocardial injection of hydrogel with high interstitial spread does not impact action potential propagation. Acta Biomater 2015; 26: 13−22. link1

[124] Reis LA, Chiu LLY, Feric N, Fu L, Radisic M. Biomaterials in myocardial tissue engineering. J Tissue Eng Regen Med 2016; 10(1): 11−28. link1

[125] Griffith LG, Naughton G. Tissue engineering−current challenges and expanding opportunities. Science 2002; 295(5557): 1009−14. link1

[126] Tandon N, Cannizzaro C, Chao PH, Maidhof R, Marsano A, Au HT, Electrical stimulation systems for cardiac tissue engineering. Nat Protoc 2009; 4(2): 155−73. link1

Related Research