Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2017, Volume 3, Issue 1 doi: 10.1016/J.ENG.2017.01.005

Noncoding RNAs and Their Potential Therapeutic Applications in Tissue Engineering

Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China

Accepted: 2017-02-03 Available online: 2017-02-28

Next Previous

Abstract

Tissue engineering is a relatively new but rapidly developing field in the medical sciences. Noncoding RNAs (ncRNAs) are functional RNA molecules without a protein-coding function; they can regulate cellular behavior and change the biological milieu of the tissue. The application of ncRNAs in tissue engineering is starting to attract increasing attention as a means of resolving a large number of unmet healthcare needs, although ncRNA-based approaches have not yet entered clinical practice. In-depth research on the regulation and delivery of ncRNAs may improve their application in tissue engineering. The aim of this review is: to outline essential ncRNAs that are related to tissue engineering for the repair and regeneration of nerve, skin, liver, vascular system, and muscle tissue; to discuss their regulation and delivery; and to anticipate their potential therapeutic applications.

Figures

Fig. 1

References

[ 1 ] Berthiaume F, Maguire TJ, Yarmush ML. Tissue engineering and regenerative medicine: history, progress, and challenges. Annu Rev Chem Biomol Eng 2011;2:403–30 link1

[ 2 ] Zhou S, Ding F, Gu X. Non-coding RNAs as emerging regulators of neural injury responses and regeneration. Neurosci Bull 2016;32(3):253–64 link1

[ 3 ] Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell 2009;136(4):629–41 link1

[ 4 ] Kaikkonen MU, Lam MT, Glass CK. Non-coding RNAs as regulators of gene expression and epigenetics. Cardiovasc Res 2011;90(3):430–40 link1

[ 5 ] Ivey KN, Srivastava D. microRNAs as regulators of differentiation and cell fate decisions. Cell Stem Cell 2010;7(1):36–41 link1

[ 6 ] Khoshgoo N, Kholdebarin R, Iwasiow BM, Keijzer R. microRNAs and lung development. Pediatr Pulmonol 2013;48(4):317–23 link1

[ 7 ] Small EM, Olson EN. Pervasive roles of microRNAs in cardiovascular biology. Nature 2011;469(7330):336–42 link1

[ 8 ] Amodio N, Di Martino MT, Neri A, Tagliaferri P, Tassone P. Non-coding RNA: a novel opportunity for the personalized treatment of multiple myeloma. Expert Opin Biol Ther 2013;13 Suppl 1 :S125–37 link1

[ 9 ] Sana J, Faltejskova P, Svoboda M, Slaby O. Novel classes of non-coding RNAs and cancer. J Transl Med 2012;10:103 link1

[10] Lin M, Pedrosa E, Shah A, Hrabovsky A, Maqbool S, Zheng D, et al. RNA-Seq of human neurons derived from iPS cells reveals candidate long non-coding RNAs involved in neurogenesis and neuropsychiatric disorders. PLoS One 2011;6(9):e23356 link1

[11] Ng SY, Johnson R, Stanton LW. Human long non-coding RNAs promote pluripotency and neuronal differentiation by association with chromatin modifiers and transcription factors. EMBO J 2012;31(3):522–33 link1

[12] Brett JO, Renault VM, Rafalski VA, Webb AE, Brunet A. The microRNA cluster miR-106b~25 regulates adult neural stem/progenitor cell proliferation and neuronal differentiation. Aging (Albany, NY) 2011;3(2):108–24 link1

[13] Szulwach KE, Li X, Smrt RD, Li Y, Luo Y, Lin L, et al. Cross talk between microRNA and epigenetic regulation in adult neurogenesis. J Cell Biol 2010;189(1):127–41 link1

[14] Liu C, Teng Z, Santistevan NJ, Szulwach KE, Guo W, Jin P, et al. Epigenetic regulation of miR-184 by MBD1 governs neural stem cell proliferation and differentiation. Cell Stem Cell 2010;6(5):433–44 link1

[15] Liu C, Teng Z, McQuate AL, Jobe EM, Christ CC, von Hoyningen-Huene SJ, et al. An epigenetic feedback regulatory loop involving microRNA-195 and MBD1 governs neural stem cell differentiation. PLoS One 2013;8(1):e51436 link1

[16] Zhao C, Sun G, Li S, Shi Y. A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination. Nat Struct Mol Biol 2009;16(4):365–71 link1

[17] Zhao C, Sun G, Ye P, Li S, Shi Y. microRNA let-7d regulates the TLX/microRNA-9 cascade to control neural cell fate and neurogenesis. Sci Rep 2013;3:1329 link1

[18] Aranha MM, Santos DM, Solá S, Steer CJ, Rodrigues CM. miR-34a regulates mouse neural stem cell differentiation. PLoS One 2011;6(8):e21396 link1

[19] [] Zheng X, Lin C, Li Y, Ye J, Zhou J, Guo P. Long noncoding RNA BDNF-AS regulates ketamine-induced neurotoxicity in neural stem cell derived neurons. Biomed Pharmacother 2016;82:722–8 link1

[20] Han R, Kan Q, Sun Y, Wang S, Zhang G, Peng T, et al. miR-9 promotes the neural differentiation of mouse bone marrow mesenchymal stem cells via targeting zinc finger protein 521. Neurosci Lett 2012;515(2):147–52 link1

[21] Zou D, Chen Y, Han Y, Lv C, Tu G. Overexpression of microRNA-124 promotes the neuronal differentiation of bone marrow-derived mesenchymal stem cells. Neural Regen Res 2014;9(12):1241–48 link1

[22] Wu R, Tang Y, Zang W, Wang Y, Li M, Du Y, et al. microRNA-128 regulates the differentiation of rat bone mesenchymal stem cells into neuron-like cells by Wnt signaling. Mol Cell Biochem 2014;387(1–2):151–8 link1

[23] Harraz MM, Eacker SM, Wang X, Dawson TM, Dawson VL. microRNA-223 is neuroprotective by targeting glutamate receptors. Proc Natl Acad Sci USA 2012;109(46):18962–7 link1

[24] Hutchison ER, Kawamoto EM, Taub DD, Lal A, Abdelmohsen K, Zhang Y, et al. Evidence for miR-181 involvement in neuroinflammatory responses of astrocytes. Glia 2013;61(7):1018–28 link1

[25] Irmady K, Jackman KA, Padow VA, Shahani N, Martin LA, Cerchietti L, et al. miR-592 regulates the induction and cell death-promoting activity of p75NTR in neuronal ischemic injury. J Neurosci 2014;34(9):3419–28 link1

[26] Liu P, Zhao H, Wang R, Wang P, Tao Z, Gao L, et al. microRNA-424 protects against focal cerebral ischemia and reperfusion injury in mice by suppressing oxidative stress. Stroke 2015;46(2):513–9 link1

[27] Zhao H, Tao Z, Wang R, Liu P, Yan F, Li J, et al. microRNA-23a-3p attenuates oxidative stress injury in a mouse model of focal cerebral ischemia-reperfusion. Brain Res 2014;1592:65–72 link1

[28] Chen Q, Xu J, Li L, Li H, Mao S, Zhang F, et al. microRNA-23a/b and microRNA-27a/b suppress Apaf-1 protein and alleviate hypoxia-induced neuronal apoptosis. Cell Death Dis 2014;5:e1132 link1

[29] Chi W, Meng F, Li Y, Wang Q, Wang G, Han S, et al. Downregulation of miRNA-134 protects neural cells against ischemic injury in N2A cells and mouse brain with ischemic stroke by targeting HSPA12B. Neuroscience 2014;277:111–22 link1

[30] Stary CM, Xu L, Sun X, Ouyang YB, White RE, Leong J, et al. microRNA-200c contributes to injury from transient focal cerebral ischemia by targeting Reelin. Stroke 2015;46(2):551–6 link1

[31] Wang P, Zhang N, Liang J, Li J, Han S, Li J. micro-RNA-30a regulates ischemia-induced cell death by targeting heat shock protein HSPA5 in primary cultured cortical neurons and mouse brain after stroke. J Neurosci Res 2015;93(11):1756–68 link1

[32] Wang P, Liang J, Li Y, Li J, Yang X, Zhang X, et al. Down-regulation of miRNA-30a alleviates cerebral ischemic injury through enhancing Beclin 1-mediated autophagy. Neurochem Res 2014;39(7):1279–91 link1

[33] Wang S, Zhang X, Yuan Y, Tan M, Zhang L, Xue X, et al. BRG1 expression is increased in thoracic aortic aneurysms and regulates proliferation and apoptosis of vascular smooth muscle cells through the long non-coding RNA HIF1A-AS1 in vitro. Eur J Cardiothorac Surg 2015;47(3):439–46 link1

[34] J Zhu F, Liu J, Li J, Xiao F, Zhang Z, Zhang L. microRNA-124 (miR-124) regulates Ku70 expression and is correlated with neuronal death induced by ischemia/reperfusion. J Mol Neurosci 2014;52(1):148–55 link1

[35] Sabirzhanov B, Stoica BA, Zhao Z, Loane DJ, Wu J, Dorsey SG, et al. miR-711 upregulation induces neuronal cell death after traumatic brain injury. Cell Death Differ 2016;23(4):654–68 link1

[36] Jee MK, Jung JS, Im YB, Jung SJ, Kang S. Silencing of miR20a is crucial for Ngn1-mediated neuroprotection in injured spinal cord. Hum Gene Ther 2012;23(5):508–20 link1

[37] Liu X, Zheng X, Zhang R, Guo Y, Wang J. Combinatorial effects of miR-20a and miR-29b on neuronal apoptosis induced by spinal cord injury. Int J Clin Exp Pathol 2015;8(4):3811–8 link1

[38] Wang L, Chopp M, Szalad A, Zhang Y, Wang X, Zhang R, et al. The role of miR-146a in dorsal root ganglia neurons of experimental diabetic peripheral neuropathy. Neuroscience 2014;259:155–63 link1

[39] Liu J, Githinji J, Mclaughlin B, Wilczek K, Nolta J. Role of miRNAs in neuronal differentiation from human embryonic stem cell-derived neural stem cells. Stem Cell Rev 2012;8(4):1129–37 link1

[40] [] Strickland IT, Richards L, Holmes FE, Wynick D, Uney JB, Wong LF. Axotomy-induced miR-21 promotes axon growth in adult dorsal root ganglion neurons. PLoS One 2011;6(8):e23423 link1

[41] Zhou S, Shen D, Wang Y, Gong L, Tang X, Yu B, et al. microRNA-222 targeting PTEN promotes neurite outgrowth from adult dorsal root ganglion neurons following sciatic nerve transection. PLoS One 2012;7(9):e44768. Erratum in: PLoS One 2012;7(9) link1

[42] Lu CS, Zhai B, Mauss A, Landgraf M, Gygi S, Van Vactor D. microRNA-8 promotes robust motor axon targeting by coordinate regulation of cell adhesion molecules during synapse development. Philos Trans R Soc Lond B Biol Sci 2014;369(1652):20130517 link1

[43] Wu D, Murashov AK. microRNA-431 regulates axon regeneration in mature sensory neurons by targeting the Wnt antagonist Kremen1. Front Mol Neurosci 2013;6:35 link1

[44] Zhang H, Zheng S, Zhao J, Zhao W, Zheng L, Zhao D, et al. microRNAs 144, 145, and 214 are down-regulated in primary neurons responding to sciatic nerve transection. Brain Res 2011;1383:62–70 link1

[45] Yao C, Wang J, Zhang H, Zhou S, Qian T, Ding F, et al. Long non-coding RNA uc.217 regulates neurite outgrowth in dorsal root ganglion neurons following peripheral nerve injury. Eur J Neurosci 2015;42(1):1718–25 link1

[46] Liu C, Wang R, Saijilafu Z, Jiao B, Zhang F, Zhou. microRNA-138 and SIRT1 form a mutual negative feedback loop to regulate mammalian axon regeneration. Genes Dev 2013;27(13):1473–83 link1

[47] Banerjee S, Xie N, Cui H, Tan Z, Yang S, Icyuz M, et al. microRNA let-7c regulates macrophage polarization. J Immunol 2013;190(12):6542–9 link1

[48] Ponomarev ED, Veremeyko T, Barteneva N, Krichevsky AM, Weiner HL. microRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-α-PU.1 pathway. Nat Med 2011;17(1):64–70 link1

[49] Cardoso AL, Guedes JR, Pereira L de Almeida MC, Pedrosode Lima. miR-155 modulates microglia-mediated immune response by down-regulating SOCS-1 and promoting cytokine and nitric oxide production. Immunology 2012;135(1):73–88 link1

[50] Ni J, Wang X, Chen S, Liu H, Wang Y, Xu X, et al. microRNA let-7c-5p protects against cerebral ischemia injury via mechanisms involving the inhibition of microglia activation. Brain Behav Immun 2015;49:75–85 link1

[51] Hong P, Jiang M, Li H. Functionalrequirement of Dicer1 and miR-17-5p in reactive astrocyte proliferation after spinal cord injury in the mouse. Glia 2014;62(12):2044–60 link1

[52] Iyer A, Zurolo E, Prabowo A, Fluiter K, Spliet WG, van Rijen PC, et al. microRNA-146a: a key regulator of astrocyte-mediated inflammatory response. PLoS One 2012;7(9):e44789 link1

[53] Wang J, Hu B, Cao F, Sun S, Zhang Y, Zhu Q. Down regulation of lncSCIR1 after spinal cord contusion injury in rat. Brain Res 2015;1624:314–20 link1

[54] Yu B, Qian T, Wang Y, Zhou S, Ding G, Ding F, et al. miR-182 inhibits Schwann cell proliferation and migration by targeting FGF9 and NTM, respectively at an early stage following sciatic nerve injury. Nucleic Acids Res 2012;40(20):10356–65 link1

[55] [] Li S, Wang X, Gu Y, Chen C, Wang Y, Liu J, et al. let-7 microRNAs regenerate peripheral nerve regeneration by targeting nerve growth factor. Mol Ther 2015;23(3):423–33. Erratum in: Mol Ther 2015;23(4):790 link1

[56] Yi S, Yuan Y, Chen Q, Wang X, Gong L, Liu J, et al. Regulation of Schwann cell proliferation and migration by miR-1 targeting brain-derived neurotrophic factor after peripheral nerve injury. Sci Rep 2016;6:29121 link1

[57] Yu B, Zhou S, Wang Y, Qian T, Ding G, Ding F, et al. miR-221 and miR-222 promote Schwann cell proliferation and migration by targeting LASS2 after sciatic nerve injury. J Cell Sci 2012;125(11):2675–83 link1

[58] Zhou S, Gao R, Hu W, Qian T, Wang N, Ding G, et al. miR-9 inhibits Schwann cell migration by targeting Cthrc1 following sciatic nerve injury. J Cell Sci 2014;127(5):967–76 link1

[59] Yao C, Shi X, Zhang Z, Zhou S, Qian T, Wang Y,et al. Hypoxia-induced upregulation of miR-132 promotes Schwann cell migration after sciatic nerve injury by targeting PRKAG3. Mol Neurobiol 2016;53(8):5129–39. 26399639 link1

[60] Viader A, Chang LW, Fahrner T, Nagarajan R, Milbrandt J. microRNAs modulate Schwann cell response to nerve injury by reinforcing transcriptional silencing of dedifferentiation-related genes. J Neurosci 2011;31(48):17358–69 link1

[61] Verrier JD, Lau P, Hudson L, Murashov AK, Renne R, Notterpek L. Peripheral myelin protein 22 is regulated post-transcriptionally by miRNA-29a. Glia 2009;57(12):1265–79 link1

[62] Li S, Zhang R, Yuan Y, Yi S, Chen Q, Gong L, et al. miR-340 regulates fibrinolysis and axon regrowth following sciatic nerve injury. Mol Neurobiol. Epub 2016 Jun 25 link1

[63] Alizadeh E, Akbarzadeh A, Eslaminejad MB, Barzegar A, Hashemzadeh S, Nejati-Koshki K, et al. Up regulation of liver-enriched transcription factors HNF4a and HNF6 and liver-specific microRNA (miR-122) by inhibition of let-7b in mesenchymal stem cells. Chem Biol Drug Des 2015;85(3):268–79 link1

[64] Davoodian N, Lotfi AS, Soleimani M, Mola SJ, Arjmand S. let-7f microRNA negatively regulates hepatic differentiation of human adipose tissue-derived stem cells. J Physiol Biochem 2014;70(3):781–9 link1

[65] Cui L, Shi Y, Zhou X, Wang X, Wang J, Lan Y, et al. A set of microRNAs mediate direct conversion of human umbilical cord lining-derived mesenchymal stem cells into hepatocytes. Cell Death Dis 2013;4:e918 link1

[66] Doddapaneni R, Chawla YK, Das A, Kalra JK, Ghosh S, Chakraborti A. Overexpression of microRNA-122 enhances in vitro hepatic differentiation of fetal liver-derived stem/progenitor cells. J Cell Biochem 2013;114(7):1575–83 link1

[67] Davoodian N, Lotfi AS, Soleimani M, Mowla SJ. microRNA-122 overexpression promotes hepatic differentiation of human adipose tissue-derived stem cells. J Cell Biochem 2014;115(9):1582–93 link1

[68] Deng X, Qiu R, Wu Y, Li Z, Xie P, Zhang J, et al. Overexpression of miR-122 promotes the hepatic differentiation and maturation of mouse ESCs through a miR-122/FoxA1/HNF4a-positive feedback loop. Liver Int 2014;34(2):281–95 link1

[69] M?bus S, Yang D, Yuan Q, Lüdtke TH, Balakrishnan A, Sgodda M, et al. microRNA-199a-5p inhibition enhances the liver repopulation ability of human embryonic stem cell-derived hepatic cells. J Hepatol 2015;62(1):101–10 link1

[70] Song G, Sharma AD, Roll GR, Ng R, Lee AY, Blelloch RH, et al. microRNAs control hepatocyte proliferation during liver regeneration. Hepatology 2010;51(5):1735–43 link1

[71] Ng R, Song G, Roll GR, Frandsen NM, Willenbring H. A microRNA-21 surge facilitates rapid cyclin D1 translation and cell cycle progression in mouse liver regeneration. J Clin Invest 2012;122(3):1097–108 link1

[72] Bai Y, Yu Z, Luo L, Yi Q J, Xia Y, Zeng. microRNA-21 accelerates hepatocyte proliferation in vitro via PI3K/Akt signaling by targeting PTEN. Biochem Biophys Res Commun 2014;443(3):802–7 link1

[73] Yuan Q, Loya K, Rani B, M?bus S, Balakrishnan A, Lamle J, et al. microRNA-221 overexpression accelerates hepatocyte proliferation during liver regeneration. Hepatology 2013;57(1):299–310 link1

[74] Xu W, Zhang J, Dang Z, Li X, Zhou T, Liu J, et al. Long non-coding RNA URHC regulates cell proliferation and apoptosis via ZAK through the ERK/MAPK signaling pathway in hepatocellular carcinoma. Int J Biol Sci 2014;10(7):664–76 link1

[75] Zhou J, Ju W, Wang D, Wu L, Zhu X, Guo Z, et al. Down-regulation of microRNA-26a promotes mouse hepatocyte proliferation during liver regeneration. PLoS One 2012;7(4):e33577 link1

[76] Cirera-Salinas D, Pauta M, Allen RM, Salerno AG, Ramírez CM, Chamorro-Jorganes A, et al. miR-33 regulates cell proliferation and cell cycle progression. Cell Cycle 2012;11(5):922–33 link1

[77] Pan C, Chen H, Wang L, Yang S, Fu H, Zheng Y, et al. Down-regulation of miR-127 facilitates hepatocyte proliferation during rat liver regeneration. PLoS One 2012;7(6):e39151 link1

[78] Wang S, Wu X, Liu Y, Yuan J, Yang F, Huang J, et al. Long noncoding RNA H19 inhibits the proliferation of fetal liver cells and the Wnt signaling pathway. FEBS Lett 2016;590(4):559–70 link1

[79] Lan X, Yan J, Ren J, Zhong B, Li J, Li Y, et al. A novel long noncoding RNA lnc-HC binds hnRNPA2B1 to regulate expressions of Cyp7a1 and Abca1 in hepatocytic cholesterol metabolism. Hepatology 2016;64(1):58–72 link1

[80] Ding C, Cheng S, Yang Z, Lv Z, Xiao H, Du C, et al. Long non-coding RNA HOTAIR promotes cell migration and invasion via down-regulation of RNA binding motif protein 38 in hepatocellular carcinoma cells. Int J Mol Sci 2014;15(3):4060–76 link1

[81] Su S, Liu J, He K, Zhang M, Feng C, Peng F, et al. Overexpression of the long noncoding RNA TUG1 protects against cold-induced injury of mouse livers by inhibiting apoptosis and inflammation. FEBS J 2016;283(7):1261–74 link1

[82] Banales JM, Sáez E, úriz M, Sarvide S, Urribarri AD, Splinter P, et al. Up-regulation of microRNA 506 leads to decreased Cl-/HCO3- anion exchanger 2 expression in biliary epithelium of patients with primary biliary cirrhosis. Hepatology 2012;56(2):687–97 link1

[83] Yi R, Poy MN, Stoffel M, Fuchs E. A skin microRNA promotes differentiation by repressing ‘stemness’. Nature 2008;452(7184):225–9 link1

[84] Lena AM, Shalom-Feuerstein R, Rivetti di Val Cervo P, Aberdam D, Knight RA, Melino G, et al. miR-203 represses ‘stemness’ by repressing ΔNp63. Cell Death Differ 2008;15(7):1187–95 link1

[85] Koster MI, Kim S, Mills AA, DeMayo FJ, Roop DR. p63 is the molecular switch for initiation of an epithelial stratification program. Genes Dev 2004;18(2):126–31 link1

[86] Sonkoly E, Wei T, Pavez Loriè E, Suzuki H, Kato M, T?rm? H, et al. Protein kinase C-dependent upregulation of miR-203 induces the differentiation of human keratinocytes. J Invest Dermatol 2010;130(1):124–34 link1

[87] Hildebrand J, Rütze M, Walz N, Gallinat S, Wenck H, Deppert W, et al. A comprehensive analysis of microRNA expression during human keratinocyte differentiation in vitro and in vivo. J Invest Dermatol 2011;131(1):20–9 link1

[88] Peng H, Kaplan N, Hamanaka RB, Katsnelson J, Blatt H, Yang W, et al. microRNA-31/factor-inhibiting hypoxia-inducible factor 1 nexus regulates keratinocyte differentiation. Proc Natl Acad Sci USA 2012;109(35):14030–4 link1

[89] Antonini D, Russo MT, De Rosa L, Gorrese M, Del Vecchio L, Missero C. Transcriptional repression of miR-34 family contributes to p63-mediated cell cycle progression in epidermal cell s. J Invest Dermatol 2010;130(5):1249–57 link1

[90] Chikh A, Matin RN, Senatore V, Hufbauer M, Lavery D, Raimondi C, et al. iASPP/p63 autoregulatory feedback loop is required for the homeostasis of stratified epithelia. EMBO J 2011;30(20):4261–73 link1

[91] Biswas S, Roy S, Banerjee J, Hussain SRA, Khanna S, Meenakshisundaram G, et al. Hypoxia inducible microRNA 210 attenuates keratinocyte proliferation and impairs closure in a murine model of ischemic wounds. Proc Natl Acad Sci USA 2010;107(15):6976–81 link1

[92] Zhang L, Stokes N, Polak L, Fuchs E. Specific microRNAs are preferentially expressed by skin stem cells to balance self-renewal and early lineage commitment. Cell Stem Cell 2011;8(3):294–308 link1

[93] Xu N, Brodin P, Wei T, Meisgen F, Eidsmo L, Nagy N, et al. miR-125b, a microRNA downregulated in psoriasis, modulates keratinocyte proliferation by targeting FGFR2. J Invest Dermatol 2011;131(7):1521–9.doi: link1

[94] Amelio I, Lena AM, Viticchiè G, Shalom-Feuerstein R, Terrinoni A, Dinsdale D, et al. miR-24 triggers epidermal differentiation by controlling actin adhesion and cell migration. J Cell Biol 2012;199(2):347–63 link1

[95] Yi R, O’Carroll D, Pasolli HA, Zhang Z, Dietrich FS, Tarakhovsky A, et al. Morphogenesis in skin is governed by discrete sets of differentially expressed microRNAs. Nat Genet 2006;38(3):356–62 link1

[96] Yu J, Peng H, Ruan Q, Fatima A, Getsios S, Lavker RM. microRNA-205 promotes keratinocyte migration via the lipid phosphatase SHIP2. FASEB J 2010;24(10):3950–9 link1

[97] Yu J, Ryan DG, Getsios S, Oliveira-Fernandes M, Fatima A, Lavker RM. microRNA-184 antagonizes microRNA-205 to maintain SHIP2 levels in epithelia. Proc Natl Acad Sci USA 2008;105(49):19300–5 link1

[98] Bertero T, Gastaldi C, Bourget-Ponzio I, Imbert V, Loubat A, Selva E, et al. miR-483-3p controls proliferation in wounded epithelial cells. FASEB J 2011;25(9):3092–105 link1

[99] Sundaram GM, Common JE, Gopal FE, Srikanta S, Lakshman K, Lunny DP, et al. ‘See-saw’ expression of microRNA-198 and FSTL1 from a single transcript in wound healing. Nature 2013;495(7439):103–6 link1

[100] Pastar I, Khan AA, Stojadinovic O, Lebrun EA, Medina MC, Brem H, et al. Induction of specific microRNAs inhibits cutaneous wound healing. J Biol Chem 2012;287(35):29324–35 link1

[101] Yang X, Wang J, Guo S, Fan K, Li J, Wang Y, et al. miR-21 promotes keratinocyte migration and re-epithelialization during wound healing. Int J Biol Sci 2011;7(5):685–90 link1

[102] Li D, Li X, Wang A, Meisgen F, Pivarcsi A, Sonkoly E, eet al. microRNA-31 promotes skin wound healing by enhancing keratinocyte proliferation and migration. J Invest Dermatol 2015;135(6):1676–85 link1

[103] Hall JR, Messenger ZJ, Tam HW, Phillips SL, Recio L, Smart RC. Long noncoding RNA lincRNA- p21 is the major mediator of UVB-induced and p53-dependent apoptosis in keratinocytes. Cell Death Dis 2015;6(3):e1700 link1

[104] Suh EJ, Remillard MY, Legesse-Miller A, Johnson EL, Lemons JM, Chapman TR, et al. A microRNA network regulates proliferative timing and extracellular matrix synthesis during cellular quiescence in fibroblasts. Genome Biol 2012;13(12):R121 link1

[105] Zhu H, Li C, Bai W, Su L, Liu J, Li Y, et al. microRNA-21 regulates hTERT via PTEN in hypertrophic scar fibroblasts. PLoS One 2014;9(5):e97114 link1

[106] Polioudakis D, Bhinge AA, Killion PJ, Lee BK, Abell NS, Iyer VR. A Myc-microRNA network promotes exit from quiescence by suppressing the interferon response and cell-cycle arrest genes. Nucleic Acids Res 2013;41(4):2239–54 link1

[107] Zhang J, Liu C, Wan Y, Peng L, Li W, Qiu J. Long non-coding RNA H19 promotes the proliferation of fibroblasts in keloid scarring. Oncol Lett 2016;12(4):2835–9. 27698867 link1

[108] Mancini M, Saintigny G, Mahé C, Annicchiarico-Petruzzelli M, Melino G, Candi E. microRNA-152 and-181a participate in human dermal fibroblasts senescence acting on cell adhesion and remodeling of the extra-cellular matrix. Aging (Albany, NY) 2012;4(11):843–53 link1

[109] Dimri M, Carroll JD, Cho JH, Dimri GP. microRNA-141 regulates BMI1 expression and induces senescence in human diploid fibroblasts. Cell Cycle 2013;12(22):3537–46 link1

[110] Bonifacio LN, Jarstfer MB. miRNA profile associated with replicative senescence, extended cell culture, and ectopic telomerase expression in human foreskin fibroblasts. PLoS One 2010;5(9):e12519 link1

[111] van Kouwenhove M, Kedde M, Agami R. microRNAregulation by RNA-binding proteins and its implications for cancer. Nat Rev Cancer 2011;11(9):644–56 link1

[112] Madhyastha R, Madhyastha H, Nakajima Y, Omura S, Maruyama M. microRNA signature in diabetic wound healing: promotive role of miR-21 in fibroblast migration. Int Wound J 2012;9(4):355–61 link1

[113] Lu M, Jolly MK, Levine H, Onuchic JN, Ben-Jacob E. microRNA-based regulation of epithelial-hybrid-mesenchymal fate determination. Proc Natl Acad Sci USA 2013;110(45):18144–9 link1

[114] Huleihel L, Ben-Yehudah A, Milosevic J, Yu G, Pandit K, Sakamoto K, et al. let-7d microRNA affects mesenchymal phenotypic properties of lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 2014;306(6):L534–42 link1

[115] Liu Z, Lu C, Cui L, Hu Y, Yu Q, Jiang Y, et al. microRNA-146a modulates TGF-β1 -induced phenotypic differentiation in human dermal fibroblasts by targeting SMAD4. Arch Dermatol Res 2012;304(3):195–202 link1

[116] Lan HY. Diverse roles of TGF-β/SMADs in renal fibrosis and inflammation. Int J Biol Sci 2011;7(7):1056–67 link1

[117] Midgley AC, Bowen T, Phillips AO, Steadman R. microRNA-7 inhibition rescues age-associated loss of epidermal growth factor receptor and hyaluronan-dependent differentiation in fibroblasts. Aging Cell 2014;13(2):235–44 link1

[118] Cheng J, Wang Y, Wang D, Wu Y. Identification of collagen 1 as a post-transcriptional target of miR-29b in skin fibroblasts: therapeutic implication for scar reduction. Am J Med Sci 2013;346(2):98–103 link1

[119] Maurer B, Stanczyk J, Jüngel A, Akhmetshina A, Trenkmann M, Brock M, et al. microRNA-29, a key regulator of collagen expression in systemic sclerosis. Arthritis Rheum 2010;62(6):1733–43 link1

[120] Honda N, Jinnin M, Kira-Etoh T, Makino K, Kajihara I, Makino T, et al. miR-150 down-regulation contributes to the constitutive type I collagen overexpression in scleroderma dermal fibroblasts via the induction of integrin β3. Am J Pathol 2013;182(1):206–16 link1

[121] Ciechomska M, O’Reilly S, Suwara M, Bogunia-Kubik K, van Laar JM. miR-29a reduces TIMP-1 production by dermal fibroblasts via targeting TGF-β activated kinase 1 binding protein 1, implications for systemic sclerosis. PLoS One 2014;9(12):e115596 link1

[122] Sing T, Jinnin M, Yamane K, Honda N, Makino K, Kajihara I, et al. microRNA-92a expression in the sera and dermal fibroblasts increases in patients with scleroderma. Rheumatology (Oxford) 2012;51(9):1550–6 link1

[123] Weber M, Baker MB, Moore JP, Searles CD. miR-21 is induced in endothelial cells by shear stress and modulates apoptosis and eNOS activity. Biochem Biophys Res Commun 2010;393(4):643–8 link1

[124] Wang T, Feng Y, Sun H, Zhang L, Hao L, Shi C, et al. miR-21 regulates skin wound healing by targeting multiple aspects of the healing process. Am J Pathol 2012;181(6):1911–20 link1

[125] Zanotti S, Gibertini S, Savadori P, Curcio M, Mantegazza R, Morandi L, et al. P20.4 antithetic role of miR-21 and miR-29 in the progression of fibrosis in Duchenne muscular dystrophy. Neuromuscul Disord 2013;23(9–10):839–40 link1

[126] Wang Z, Jinnin M, Nakamura K, Harada M, Kudo H, Nakayama W, et al. Long non-coding RNA TSIX is upregulated in scleroderma dermal fibroblasts and controls collagen mRNA stabilization. Exp Dermatol 2016;25(2):131–6 link1

[127] Levy C, Khaled M, Robinson KC, Veguilla RA, Chen PH, Yokoyama S, et al. Lineage-specific transcriptional regulation of D ICER by MITF in melanocytes. Cell 2010;141(6):994–1005 link1

[128] Bouillet P, Cory L S, Zhang JM, Strasser A, Adams. Degenerative disorders caused by Bcl-2 deficiency prevented by loss of its BH3-only antagonist Bim. Dev Cell 2001;1(5):645–53 link1

[129] Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 2011;147(2):358–69 link1

[130] Chen J, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 2006;38(2):228–33 link1

[131] Gong C, Li Z, Ramanujan K, Clay I, Zhang Y, Lemire-Brachat S, et al. A long non-coding RNA, lncMyoD, regulates skeletal muscle differentiation by blocking IMP2-mediated mRNA translation. Dev Cell 2015;34(2):181–91 link1

[132] Wang L, Zhao Y, Bao X, Zhu X, Kwok YK, Sun K, et al. lncRNA Dum interacts with DNMTs to regulate Dppa2 expression during myogenic differentiation and muscle regeneration. Cell Res 2015;25(3):335–50.doi: link1

[133] Mueller AC, Cichewicz MA, Dey BK, Layer R, Reon BJ, Gagan JR, et al. MUNC, a long noncoding RNA that facilitates the function of MyoD in skeletal myogenesis. Mol Cell Biol 2015;35(3):498–513 link1

[134] Zhou L, Sun K, Zhao Y, Zhang S, Wang X, Li Y, et al. Linc-YY1 promotes myogenic differentiation and muscle regeneration through an interaction with the transcription factor YY1. Nat Commun 2015;6:10026 link1

[135] Wang H, Garzon R, Sun H, Ladner KJ, Singh R, Dahlman J, et al. NF-κB-YY1-miR-29 regulatory circuitry in skeletal myogenesis and rhabdomyosarcoma. Cancer Cell 2008;14(5):369–81 link1

[136] Naguibneva I, Ameyar-Zazoua M, Polesskaya A, Ait-Si-Ali S, Groisman R, Souidi M, et al. The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nat Cell Biol 2006;8(3):278–84 link1

[137] Dey BK, Pfeifer K, Dutta A. The H19 long noncoding RNA gives rise to microRNAs miR-675-3p and miR-675-5p to promote skeletal muscle differentiation and regeneration. Genes Dev 2014;28(5):491–501 link1

[138] Sarkar S, Dey BK, Dutta A. miR-322/424 and-503 are induced during muscle differentiation and promote cell cycle quiescence and differentiation by down-regulation of Cdc25A. Mol Biol Cell 2010;21(13):2138–49 link1

[139] Wang G, Wang Y, Xiong Y, Chen X, Ma M, Cai R, et al. Sirt1 AS lncRNA interacts with its mRNA to inhibit muscle formation by attenuating function of miR-34a. Sci Rep 2016;6:21865 link1

[140] Watts R, Johnsen VL, Shearer J, Hittel DS. Myostatin-induced inhibition of the long noncoding RNA Malat1 is associated with decreased myogenesis. Am J Physiol Cell Physiol 2013;304(10):C995–1001 link1

[141] Ballarino M, Cazzella V, D’Andrea D, Grassi L, Bisceglie L, Cipriano A, et al. Novel long noncoding RNAs (lncRNAs) in myogenesis: a miR-31 overlapping lncRNA transcript controls myoblast differentiation. Mol Cell Biol 2015;35(4):728–36 link1

[142] Alexander MS, Casar JC, Motohashi N, Myers JA, Eisenberg I, Gonzalez RT, et al. Regulation of DMD pathology by an ankyrin-encoded miRNA. Skelet Muscle 2011;1(1):27 link1

[143] Liu N, Williams AH, Maxeiner JM, Bezprozvannaya S, Shelton JM, Richardson JA, et al. microRNA-206 promotes skeletal muscle regeneration and delays progression of Duchenne muscular dystrophy in mice. J Clin Invest 2012;122(6):2054–65 link1

[144] Juan AH, Kumar RM, Marx JG, Young RA, Sartorelli V. miR-214-dependent regulation of the polycomb protein Ezh2 in skeletal muscle and embryonic stem cells. Mol Cell 2009;36(1):61–74 link1

[145] Crist CG, Montarras D, Pallafacchina G, Rocancourt D, Cumano A, Conway SJ, et al. Muscle stem cell behavior is modified by microRNA-27 regulation of Pax3 expression. Proc Natl Acad Sci USA 2009;106(32):13383–7 link1

[146] Chen J, Tao Y, Li J, Deng Z, Yan Z, Xiao X, et al. microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7. J Cell Biol 2010;190(5):867–79 link1

[147] Crippa S, Cassano M, Messina G, Galli D, Galvez BG, Curk T, et al. miR669a and miR669q prevent skeletal muscle differentiation in postnatal cardiac progenitors. J Cell Biol 2011;193(7):1197–212 link1

[148] Sato T, Yamamoto T, Sehara-Fujisawa A. miR-195/497 induce postnatal quiescence of skeletal muscle stem cells. Nat Commun 2014;5:4597 link1

[149] Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 2005;436(7048):214–20 link1

[150] Liu N, Bezprozvannaya S, Williams AH, Qi X, Richardson JA, Bassel-Duby R, et al. microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev 2008;22(23):3242–54 link1

[151] Sluijter JP, van Mil A, van Vliet P, Metz CH, Liu J, Doevendans PA, et al. microRNA-1 and-499 regulate differentiation and proliferation in human-derived cardiomyocyte progenitor cells. Arterioscler Thromb Vasc Biol 2010;30(4):859–68 link1

[152] Montgomery RL, Hullinger TG, Semus HM, Dickinson BA, Seto AG, Lynch JM, et al. Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure. Circulation 2011;124(14):1537–47 link1

[153] Callis TE, Pandya K, Seok HY, Tang RH, Tatsuguchi M, Huang ZP, et al. microRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J Clin Invest 2009;119(9):2772–86 link1

[154] van Rooij E, Quiat D, Johnson BA, Sutherland LB, Qi X, Richardson JA, et al. A family of microRNAs encoded by myosin gene s governs myosin expression and muscle performance. Dev Cell 2009;17(5):662–73 link1

[155] He S, Liu P, Jian Z, Li J, Zhu Y, Feng Z, et al. miR-138 protects cardiomyocytes from hypoxia-induced apoptosis via MLK3/JNK/c-jun pathway. Biochem Biophys Res Commun 2013;441(4):763–9 link1

[156] Dong S, Cheng Y, Yang J, Li J, Liu X, Wang X, et al. microRNA expression signature and the role of microRNA-21 in the early phase of acute myocardial infarction. J Biol Chem 2009;284(43):29514–25 link1

[157] Aurora AB, Mahmoud AI, Luo X, Johnson BA, van Rooij E, Matsuzaki S, et al. microRNA-214 protects the mouse heart from ischemic injury by controlling Ca2+ overload and cell death. J Clin Invest 2012;122(4):1222–32 link1

[158] Zhang J, Gao C, Meng M, Tang H. Long noncoding RNA MHRT protects cardiomyocytes against H2O2-induced apoptosis. Biomol Ther (Seoul) 2016;24(1):19–24 link1

[159] Thum T, Galuppo P, Wolf C, Fiedler J, Kneitz S, van Laake LW, et al. microRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation 2007;116(3):258–67 link1

[160] Gurha P, Wang T, Larimore AH, Sassi Y, Abreu-Goodger C, Ramirez MO, et al. microRNA-22 promotes heart failure through coordinate suppression of PPAR/ERR-nuclear hormone receptor transcription. PLoS One 2013;8(9):e75882 link1

[161] Eulalio A, Mano M, Dal Ferro M, Zentilin L, Sinagra G, Zacchigna S, et al. Functional screening identifies miRNAs inducing cardiac regeneration. Nature 2012;492(7429):376–81 link1

[162] Chen J, Huang Z, Seok HY, Ding J, Kataoka M, Zhang Z, et al. miR-17-92 cluster is required for and sufficient to induce cardiomyocyte proliferation in postnatal and adult hearts. Circ Res 2013;112(12):1557–66. doi: link1

[163] Liu L, An X, Li Z, Song Y, Li L, Zuo S, et al. The H19 long noncoding RNA is a novel negative regulator of cardiomyocyte hypertrophy. Cardiovasc Res 2016;111(1):56–65 link1

[164] Wang K, Liu F, Liu C, An T, Zhang J, Zhou LY, et al. The long noncoding RNA NRF regulates programmed necrosis and myocardial injury during ischemia and reperfusion by targeting miR-873. Cell Death Differ 2016;23(8):1394–405 link1

[165] Pan Z, Sun X, Shan H, Wang N, Wang J, Ren J, et al. microRNA-101 inhibited postinfarct cardiac fibrosis and improved left ventricular compliance via the FBJ osteosarcoma oncogene/transforming growth factor-β1 pathway. Circulation 2012;126(7):840–50 link1

[166] J Zhao J, Zhang W, Lin M, Wu W, Jiang P, Tou E, et al. MYOSLID is a novel serum response factor-dependent long noncoding RNA that amplifies the vascular smooth muscle differentiation program. Arterioscler Thromb Vasc Bio 2016;36(10):2088–99 link1

[167] Jayawardena TM, Egemnazarov B, Finch EA, Zhang L, Payne JA, Pandya K, et al. microRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circ Res 2012;110(11):1465–73 link1

[168] Ito T, Yagi S, Yamakuchi M. microRNA-34a regulation of endothelial senescence. Biochem Biophys Res Commun 2010;398(4):735–40 link1

[169] Qin X, Wang X, Wang Y, Tang Z, Cui Q, Xi J, et al. microRNA-19a mediates the suppressive effect of laminar flow on cyclin D1 expression in human umbilical vein endothelial cells. Proc Natl Acad Sci USA 2010;107(7):3240–4 link1

[170] Magenta A, Cencioni C, Fasanaro P, Zaccagnini G, Greco S, Sarra-Ferraris G, et al. miR-200c is upregulated by oxidative stress and induces endothelial cell apoptosis and senescence via ZEB1 inhibition. Cell Death Differ 2011;18(10):1628–39 link1

[171] Schober A, Nazari-Jahantigh M, Wei Y, Bidzhekov K, Gremse F, Grommes J, et al. microRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1. Nat Med 2014;20(4):368–76 link1

[172] Fasanaro P, D’Alessandra Y, Di Stefano V, Melchionna R, Romani S, Pompilio G, et al. microRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. J Biol Chem 2008;283(23):15878–83 link1

[173] Ghosh G, Subramanian IV, Adhikari N, Zhang X, Joshi HP, Basi D, et al. Hypoxia-induced microRNA-424 expression in human endothelial cells regulates HIF-α isoforms and promotes angiogenesis. J Clin Invest 2010;120(11):4141–54 link1

[174] Menghini R, Casagrande V, Cardellini M, Martelli E, Terrinoni A, Amati F, et al. microRNA 217 modulates endothelial cell senescence via silent information regulator 1. Circulation 2009;120(15):1524–32 link1

[175] Doebele C, Bonauer A, Fischer A, Scholz A, Reiss Y, Urbich C, et al. Members of the microRNA-17-92 cluster exhibit a cell-intrinsic antiangiogenic function in endothelial cells. Blood 2010;115(23):4944–50 link1

[176] Caporali A, Meloni M, V?llenkle C, Bonci D, Sala-Newby GB, Addis R, et al. Deregulation of microRNA-503 contributes to diabetes mellitus-induced impairment of endothelial function and reparative angiogenesis after limb ischemia. Circulation 2011;123(3):282–91 link1

[177] Paul JD, Coulombe KL, Toth PT, Zhang Y, Marsboom G, Bindokas VP, et al. SLIT3-ROBO4 activation promotes vascular network formation in human engineered tissue and angiogenesis in vivo. J Mol Cell Cardiol 2013;64:124–31 link1

[178] Smits M, Mir SE, Nilsson RJ, van der Stoop PM, Niers JM, Marquez VE, et al. Down-regulation of miR-101 in endothelial cells promotes blood vessel formation through reduced repression of EZH2. PLoS One 2011;6(1):e16282 link1

[179] Suárez Y, Fernández-Hernando C, Yu J, Gerber SA, Harrison KD, Pober JS, et al. Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis. Proc Natl Acad Sci USA 2008;105(37):14082–7 link1

[180] Nicoli S, Standley C, Walker P, Hurlstone A, Fogarty KE, Lawson ND. microRNA-mediated integration of haemodynamics and Vegf signalling during angiogenesis. Nature 2010;464(7292):1196–200 link1

[181] Jiang C, Fang X, Jiang Y, Shen F, Hu Z, Li X, et al. TNF-α induces vascular endothelial cells apoptosis through overexpressing pregnancy induced noncoding RNA in Kawasaki disease model. Int J Biochem Cell Biol 2016;72:118–24. doi: link1

[182] Weber M, Kim S, Patterson N, Rooney K, Searles CD. miRNA-155 targets myosin light chain kinase and modulates actin cytoskeleton organization in endothelial cells. Am J Physiol Heart Circ Physiol 2014;306(8):H1192–203 link1

[183] Fang Y, Davies PF. Site-specific microRNA-92a regulation of Kruppel-like factors 4 and 2 in atherosusceptible endothelium. Arterioscler Thromb Vasc Biol 2012;32(4):979–87 link1

[184] Ni CW, Qiu H, Jo H. microRNA-663 upregulated by oscillatory shear stress plays a role in inflammatory response of endothelial cells. Am J Physiol Heart Circ Physiol 2011;300(5):H1762–9 link1

[185] Fang Y, Shi C, Manduchi E, Civelek M, Davies PF. microRNA-10a regulation of proinflammatory phenotype in athero-susceptible endothelium in vivo and in vitro. Proc Natl Acad Sci USA 2010;107(30):13450–5 link1

[186] Kim CW, Kumar S, Son DJ, Jang IH, Griendling KK, Jo H. Prevention of abdominal aortic aneurysm by anti-microRNA-712 or anti-microRNA-205 in angiotensin II-infused mice. Arterioscler Thromb Vasc Biol 2014;34(7):1412–21 link1

[187] Cordes KR, Sheehy NT, White MP, Berry EC, Morton SU, Muth AN, et al. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature 2009;460(7256):705–10.19578358 link1

[188] Chan MC, Hilyard AC, Wu C, Davis BN, Hill NS, Lal A, et al. Molecular basis for antagonism between PDGF and the TGFβ family of signalling pathways by control of miR-24 expression. EMBO J 2010;29(3):559–73 link1

[189] Liu X, Cheng Y, Zhang S, Lin Y, Yang J, Zhang C. A necessary role of miR-221 and miR-222 in vascular smooth muscle cell proliferation and neointimal hyperplasia. Circ Res 2009;104(4):476–87 link1

[190] Badi I, Burba I, Ruggeri C, Zeni M F, Bertolotti A, Scopece, et al. microRNA-34a induces vascular smooth muscle cells senescence by SIRT1 downregulation and promotes the expression of age-associated pro-inflammatory secretory factors. J Gerontol A Biol Sci Med Sci 2015;70(11):1304–11. 25352462 link1

[191] Ji R, Cheng Y, Yue J, Yang J, Liu X, Chen H, et al. microRNA expression signature and antisense-mediated depletion reveal an essential role of microRNA in vascular neointimal lesion formation. Circ Res 2007;100(11):1579–88 link1

[192] Wu G, Cai J, Han ZP Y, Chen C J, Huang, Chen, et al. lincRNA-p21 regulates neointima formation, vascular smooth muscle cell proliferation, apoptosis, and atherosclerosis by enhancing p53 activity. Circulation 2014;130(17):1452–65 link1

[193] Zhang P, Huang A, Ferruzzi J, Mecham RP, Starcher BC, Tellides G, et al. Inhibition of microRNA-29 enhances elastin levels in cells haploinsufficient for elastin and in bioengineered vessels─brief report. Arterioscler Thromb Vasc Biol 2012;32(3):756–9 link1

[194] Bhattacharyya A, Lin S, Sandig M, Mequanint K. Regulation of vascular smooth muscle cell phenotype in three-dimensional coculture system by Jagged1-selective Notch3 signaling. Tissue Eng Part A 2014;20(7–8):1175–87 link1

[195] Yamaguchi S, Yamahara K, Homma K, Suzuki S, Fujii S, Morizane R, et al. The role of microRNA-145 in human embryonic stem cell differentiation into vascular cells. Atherosclerosis 2011;219(2):468–74 link1

[196] Luo Z, Wen G, Wang G, Pu X, Ye S, Xu Q, et al. microRNA-200C and-150 play an important role in endothelial cell differentiation and vasculogenesis by targeting transcription repressor ZEB1. Stem Cells 2013;31(9):1749–62 link1

[197] Xie C, Huang H, Sun X, Guo Y, Hamblin M, Ritchie RP, et al. microRNA-1 regulates smooth muscle cell differentiation by repressing Kruppel-like factor 4. Stem Cells Dev 2011;20(2):205–10 link1

[198] Huang H, Xie C, Sun X, Ritchie RP, Zhang J, Chen Y. miR-10a contributes to retinoid acid-induced smooth muscle cell differentiation. J Biol Chem 2010;285(13):9383–9 link1

[199] Xiao Q, Luo Z, Pepe AE, Margariti A, Zeng L, Xu Q. Embryonic stem cell differentiation into smooth muscle cells is mediated by Nox4-produced H2O2. Am J Physiol Cell Physiol 2009;296(4):C711–23 link1

[200] Spinetti G, Fortunato O, Caporali A, Shantikumar S, Marchetti M, Meloni M, et al. microRNA-15a and microRNA-16 impair human circulating proangiogenic cell functions and are increased in the proangiogenic cells and serum of patients with critical limb ischemia. Circ Res 2013;112(2):335–46 link1

[201] Han F, Huo Y, Huang C, Chen C, Ye J. microRNA-30b promotes axon outgrowth of retinal ganglion cells by inhibiting Semaphorin3A expression. Brain Res 2015;1611:65–73 link1

[202] Gu X, Ding F, Yang Y, Liu J. Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration. Prog Neurobiol 2011;93(2):204–30 link1

[203] Nebrig M, Neuhaus P, Pascher A. Advances in the management of the explanted donor liver. Nat Rev Gastroenterol Hepatol 2014;11(8):489–96 link1

[204] Dutkowski P, Linecker M, DeOliveira ML, Müllhaupt B, Clavien PA. Challenges to liver transplantation and strategies to improve outcomes. Gastroenterology 2015;148(2):307–23 link1

[205] Uygun BE, Yarmush ML. Engineered liver for transplantation. Curr Opin Biotechnol 2013;24(5):893–9 link1

[206] McDaniel K, Herrera L, Zhou T, Francis H, Han Y, Levine P, et al. The functional role of microRNAs in alcoholic liver injury. J Cell Mol Med 2014;18(2):197–207 link1

[207] Padgett KA, Lan RY, Leung PC, Lleo A, Dawson K, Pfeiff J, et al. Primary biliary cirrhosis is associated with altered hepatic microRNA expression. J Autoimmun 2009;32(3–4):246–53 link1

[208] Szabo G, Bala S. MicroRNAs in liver disease. Nat Rev Gastroenterol Hepatol 2013;10(9):542–52 link1

[209] Janssen HL, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K, et al. Treatment of HCV infection by targeting microRNA. N Engl J Med 2013;368(18):1685–94 link1

[210] Finch ML, Marquardt JU, Yeoh GC, Callus BA. Regulation of microRNAs and their role in liver development, regeneration and disease. Int J Biochem Cell Biol 2014;54:288–303 link1

[211] Chen X, Murad M, Cui Y, Yao L, Venugopal SK, Dawson K, et al. miRNA regulation of liver growth after 50% partial hepatectomy and small size grafts in rats. Transplantation 2011;91(3):293–9 link1

[212] Davoodian N, Lotfi AS, Soleimani M, Mowla SJ. microRNA-122 overexpression promotes hepatic differentiation of human adipose tissue-derived stem cells. J Cell Biochem 2014;115(9):1582–93 link1

[213] Kasuya J, Tanishita K. Microporous membrane-based liver tissue engineering for the reconstruction of three-dimensional functional liver tissues in vitro. Biomatter 2012;2(4):290–5 link1

[214] Katsuda T, Kojima N, Ochiya T, Sakai Y. Biliary epithelial cells play an essential role in the reconstruction of hepatic tissue with a functional bile ductular network. Tissue Eng Part A 2013;19(21–22):2402–11 link1

[215] O’Hara SP, Gradilone SA, Masyuk TV, Tabibian JH, LaRusso NF. microRNAs in cholangiopathies. Curr Pathobiol Rep 2014;2(3):133–42 link1

[216] Hu C, Huang F, Deng G, Nie W, Huang W, Zeng X. miR-31 promotes oncogenesis in intrahepatic cholangiocarcinoma cells via the direct suppression of RASA1. Exp Ther Med 2013;6(5):1265–70. 24223656 link1

[217] Wang Q, Tang H, Yin S, Dong C. Downregulation of microRNA-138 enhances the proliferation, migration and invasion of cholangiocarcinoma cells through the upregulation of RhoC/p-ERK/MMP-2/MMP-9. Oncol Rep 2013;29(5):2046–52 link1

[218] Glaser S, Meng F, Han Y, Onori P, Chow BK, Francis H, et al. Secretin stimulates biliary cell proliferation by regulating expression of microRNA 125b and microRNA let7a in mice. Gastroenterology 2014;146(7):1795–808. link1

[219] van Rooij E, Purcell AL, Levin AA. Developing microRNA therapeutics. Circ Res 2012;110(3):496–507 link1

[220] Miller KJ, Brown DA, Ibrahim MM, Ramchal TD, Levinson H. microRNAs in skin tissue engineering. Adv Drug Deliv Rev 2015;88:16–36 link1

[221] Yi R, Fuchs E. microRNA-mediated control in the skin. Cell Death Differ 2010;17(2):229–35 link1

[222] Mills AA, Zheng B, Wang X, Vogel H, Roop DR, Bradley A. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 1999;398(6729):708–13 link1

[223] Yang A, Schweitzer R, Sun D, Kaghad M, Walker N, Bronson RT, et al. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 1999;398(6729):714–8 link1

[224] Senoo M, Pinto F, Crum CP, McKeon F. p63 is essential for the proliferative potential of stem cells in stratified epithelia. Cell 2007;129(3):523–36 link1

[225] Bertero T, Gastaldi C, Bourget-Ponzio I, Mari B, Meneguzzi G, Barbry P, et al. CDC25A targeting by miR-483-3p decreases CCND-CDK4/6 assembly and contributes to cell cycle arrest. Cell Death Differ 2013;20(6):800–11 link1

[226] Faraonio R, Salerno P, Passaro F, Sedia C, Iaccio A, Bellelli R, et al. A set of miRNAs participates in the cellular senescence program in human diploid fibroblasts. Cell Death Differ 2012;19(4):713–21 link1

[227] Rehder J, Souto LRM, Issa CMBM, Puzzi MB. Model of human epidermis reconstructed in vitro with keratinocytes and melanocytes on dead de-epidermized human dermis. Sao Paulo Med J 2004;122(1):22–5 link1

[228] Müller DW, Bosserhoff AK. Integrin β3 expression is regulated by let-7a miRNA in malignant melanoma. Oncogene 2008;27(52):6698–706 link1

[229] Schultz J, Lorenz P, Gross G, Ibrahim S, Kunz M. microRNA let-7b targets important cell cycle molecules in malignant melanoma cells and interferes with anchorage-independent growth. Cell Res 2008;18(5):549–57 link1

[230] Müller DW, Rehli M, Bosserhoff AK. miRNA expression profiling in melanocytes and melanoma cell lines reveals miRNAs associated with formation and progression of malignant melanoma. J Invest Dermatol 2009;129(7):1740–51 link1

[231] Segura MF, Hanniford D, Menendez S, Reavie L, Zou X, Alvarez-Diaz S, et al. Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-associated transcription factor. Proc Natl Acad Sci USA 2009;106(6):1814–9 link1

[232] Bemis LT, Chen R, Amato CM, Classen EH, Robinson SE, Coffey DG, et al. microRNA-137 targets microphthalmia-associated transcription factor in melanoma cell lines. Cancer Res 2008;68(5):1362–8 link1

[233] Goswami S, Tarapore RS, Teslaa JJ, Grinblat Y, Setaluri V, Spiegelman VS. microRNA-340-mediated degradation of microphthalmia-associated transcription factor mRNA is inhibited by the coding region determinant-binding protein. J Biol Chem 2010;285(27):20532–40. Retraction in: Goswami S, Tarapore RS, Teslaa JJ, Grinblat Y, Setaluri V, Spiegelman VS. J Biol Chem 2014;289(17):11859 link1

[234] Quattrocelli M, Sampaolesi M. The mesmiRizing complexity of microRNAs for striated muscle tissue engineering. Adv Drug Deliv Rev 2015;88:37–52 link1

[235] Cezar CA, Mooney DJ. Biomaterial-based delivery for skeletal muscle repair. Adv Drug Deliv Rev 2015;84:188–97 link1

[236] Pascual-Gil S, Garbayo E, Díaz-Herráez P, Prosper F, Blanco-Prieto MJ. Heart regeneration after myocardial infarction using synthetic biomaterials. J Control Release 2015;203:23–38 link1

[237] [] Luo W, Nie Q, Zhang X. microRNAs involved in skeletal muscle differentiation. J Genet Genomics 2013;40(3):107–16 link1

[238] Williams AH, Valdez G, Moresi V, Qi X, McAnally J, Elliott JL, et al. microRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice. Science 2009;326(5959):1549–54 link1

[239] Chaturvedi P, Tyagi SC. Epigenetic mechanisms underlying cardiac degeneration and regeneration. Int J Cardiol 2014;173(1):1–11 link1

[240] Gori M, Trombetta M, Santini D, Rainer A. Tissue engineering and microRNAs: future perspectives in regenerative medicine. Expert Opin Biol Ther 2015;15(11):1601–22 link1

[241] Caputo M, Saif J, Rajakaruna C, Brooks M, Angelini GD, Emanueli C. microRNAs in vascular tissue engineering and post-ischemic neovascularization. Adv Drug Deliv Rev 2015;88:78–91 link1

[242] Pober JS, Sessa WC. Evolving functions of endothelial cells in inflammation. Nat Rev Immunol 2007;7(10):803–15 link1

[243] Yang W, Yang D, Na S, Sandusky G, Zhang Q, Zhao G. Dicer is required for embryonic angiogenesis during mouse development. J Biol Chem 2005;280(10):9330–5 link1

[244] Kane NM, Howard L, Descamps B, Meloni M, McClure J, Lu R, et al. Role of microRNAs 99b, 181a, and 181b in the differentiation of human embryonic stem cells to vascular endothelial cells. Stem Cells 2012;30(4):643–54 link1

[245] Zhang L, Zhou Y, Zhu J, Xu Q. An updated view on stem cell differentiation into smooth muscle cells. Vascul Pharmacol 2012;56(5–6):280–7 link1

[246] Owens GK, Kumar MS, Wamhoff BR. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 2004;84(3):767–801 link1

[247] Lacolley P, Regnault V, Nicoletti A, Li Z, Michel JB. The vascular smooth muscle cell in arterial pathology: a cell that can take on multiple roles. Cardiovasc Res 2012;95(2):194–204 link1

[248] Peng B, Chen Y, Leong KW. microRNA delivery for regenerative medicine. Adv Drug Deliv Rev 2015;88:108–22 link1

[249] Dufait I, Liechtenstein T, Lanna A, Bricogne C, Laranga R, Padella A, et al. Retroviral and lentiviral vectors for the induction of immunological tolerance. Scientifica (Cairo) 2012;2012:694137 link1

[250] McBride JL, Behrstock SP, Chen EY, Jakel RJ, Siegel I, Svendsen CN, et al. Human neural stem cell transplants improve motor function in a rat model of Huntington’s disease. J Comp Neurol 2004;475(2):211–9 link1

[251] Englund U, Fricker-Gates RA, Lundberg C, Bj?rklund A, Wictorin K. Transplantation of human neural progenitor cells into the neonatal rat brain: extensive migration and differentiation with long-distance axonal projections. Exp Neurol 2002;173(1):1–21 link1

[252] Dugas JC, Cuellar TL, Scholze A, Ason B, Ibrahim A, Emery B, et al. Dicer1 and miR-219 are required for normal oligodendrocyte differentiation and myelination. Neuron 2010;65(5):597–611 link1

[253] McTigue DM, Wei P, Stokes BT. Proliferation of NG2-positive cells and altered oligodendrocyte numbers in the contused rat spinal cord. J Neurosci 2001;21(10):3392–400 link1

[254] Beavers KR, Nelson CE, Duvall CL. miRNA inhibition in tissue engineering and regenerative medicine. Adv Drug Deliv Rev 2015;88:123–37 link1

[255] Lin E, Nemunaitis J. Oncolytic viral therapies. Cancer Gene Ther 2004;11(10):643–64 link1

[256] Nguyen LH, Diao HJ, Chew SY. microRNAs and their potential therapeutic applications in neural tissue engineering. Adv Drug Deliv Rev 2015;88:53–66 link1

[257] Yau WW, Rujitanaroj PO, Lam L, Chew SY. Directing stem cell fate by controlled RNA interference. Biomaterials 2012;33(9):2608–28 link1

[258] Muthiah M, Park IK, Cho CS. Nanoparticle-mediated delivery of therapeutic genes: focus on miRNA therapeutics. Expert Opin Drug Deliv 2013;10(9):1259–73 link1

[259] Torrecilla J, Rodríguez-Gascón A, Solinís Má, del Pozo-Rodríguez A. Lipid nanoparticles as carriers for RNAi against viral infections: current status and future perspectives. Biomed Res Int 2014;2014:161794 link1

[260] Dalby B, Cates S, Harris A, Ohki EC, Tilkins ML, Price PJ, et al. Advanced transfection with Lipofectamine 2000 reagent: primary neurons, siRNA, and high-throughput applications. Methods 2004;33(2):95–103 link1

[261] Nguyen LT, Atobe K, Barichello JM, Ishida T, Kiwada H. Complex formation with plasmid DNA increases the cytotoxicity of cationic liposomes. Biol Pharm Bull 2007;30(4):751–7 link1

[262] Chen Y, Gao D, Huang L. In vivo delivery of miRNAs for cancer therapy: challenges and strategies. Adv Drug Deliv Rev 2015;81:128–41 link1

[263] Boussif O, Lezoualc’h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA 1995;92(16):7297–301 link1

[264] Park TG, Jeong JH, Kim SW. Current status of polymeric gene delivery systems. Adv Drug Deliv Rev 2006;58(4):467–86 link1

[265] Akinc A, Thomas M, Klibanov AM, Langer R. Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J Gene Med 2005;7(5):657–63 link1

[266] Davis S, Lollo B, Freier S, Esau C. Improved targeting of miRNA with antisense oligonucleotides. Nucleic Acids Res 2006;34(8):2294–304 link1

[267] Chew SY, Mi R, Hoke A, Leong KW. The effect of the alignment of electrospun fibrous scaffolds on Schwann cell maturation. Biomaterials 2008;29(6):653–61 link1

[268] Zhang B, Pan X, Cobb GP, Anderson TA. microRNAs as oncogenes and tumor suppressors. Dev Biol 2007;302(1):1–12 link1

[269] Gillies JK, Lorimer IA. Regulation of p27Kip1 by miRNA 221/222 in glioblastoma. Cell Cycle 2007;6(16):2005–9 link1

[270] Chen Q, Wei C, Wang Z, Sun M. Long non-coding RNAs in anti-cancer drug resistance. Oncotarget. Epub 2016Oct 4 link1

Related Research