Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2017, Volume 3, Issue 1 doi: 10.1016/J.ENG.2017.01.010

Recent Progress in Cartilage Tissue Engineering—Our Experience and Future Directions

a Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
b National Tissue Engineering Research Center of China, Shanghai 200241, China
c Research Institute of Plastic Surgery, Plastic Surgery Hospital, Weifang Medical University, Weifang, Shandong 261041, China
d Plastic Surgery Hospital, Chinese Academy of Medical Science, Beijing 100144, China

Received: 2016-10-31 Revised: 2017-01-12 Accepted: 2017-01-13 Available online: 2017-02-21

Next Previous

Abstract

Given the limited spontaneous repair that follows cartilage injury, demand is growing for tissue engineering approaches for cartilage regeneration. There are two major applications for tissue-engineered cartilage. One is in orthopedic surgery, in which the engineered cartilage is usually used to repair cartilage defects or loss in an articular joint or meniscus in order to restore the joint function. The other is for head and neck reconstruction, in which the engineered cartilage is usually applied to repair cartilage defects or loss in an auricle, trachea, nose, larynx, or eyelid. The challenges faced by the engineered cartilage for one application are quite different from those faced by the engineered cartilage for the other application. As a result, the emphases of the engineering strategies to generate cartilage are usually quite different for each application. The statuses of preclinical animal investigations and of the clinical translation of engineered cartilage are also at different levels for each application. The aim of this review is to provide an opinion piece on the challenges, current developments, and future directions for cartilage engineering for both applications.

Figures

Fig. 1

Fig. 2

Fig. 3

References

[ 1 ] Bernhard JC, Vunjak-Novakovic G. Should we use cells, biomaterials, or tissue engineering for cartilage regeneration? Stem Cell Res Ther 2016;7(1):56 link1

[ 2 ] Reinholz GG, Lu L, Saris DBF, Yaszemski MJO, O’Driscoll SW. Animal models for cartilage reconstruction. Biomaterials 2004;25(9):1511–21 link1

[ 3 ] Steadman JR, Rodkey WG, Rodrigo JJ. Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin Orthop Relat Res 2001;391(391 Suppl):S362–9 link1

[ 4 ] Hangody L, Füles P. Autologous osteochondral mosaicplasty for the treatment of full-thickness defects of weight-bearing joints: ten years of experimental and clinical experience. J Bone Joint Surg Am 2003;85(Suppl 2):25–32 link1

[ 5 ] Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantatio n. N Engl J Med 1994;331(14):889–95 link1

[ 6 ] Spiller KL, Maher SA, Lowman AM. Hydrogels for the repair of articular cartilage defects. Tissue Eng Part B Rev 2011;17(4):281–99 link1

[ 7 ] Moran CJ, Pascual-Garrido C, Chubinskaya S, Potter HG, Warren RF, Cole BJ, et alRestoration of articular cartilage. J Bone Joint Surg Am 2014;96(4):336–44 link1

[ 8 ] Huey DJ, Hu JC, Athanasiou KA. Unlike bone, cartilage regeneration remains elusive. Science 2012;338(6109):917–21 link1

[ 9 ] Langer R, Vacanti JP. Tissue engineering. Science 1993;260(5110):920–6 link1

[10] Chaganti RK, Lane NE. Risk factors for incident osteoarthritis of the hip and knee. Curr Rev Musculoskelet Med 2011;4(3):99–104 link1

[11] Hunziker EB, Lippuner K, Keel MJ, Shintani N. An educational review of cartilage repair: precepts & practices—myths & misconceptions—progress & prospects. Osteoarthritis Cartilage 2015;23(3):334–50 link1

[12] Liu Y, Chen F, Liu W, Cui L, Shang Q, Xia W, et alRepairing large porcine full-thickness defects of articular cartilage using autologous chondrocyte-engineered cartilage. Tissue Eng 2002;8(4):709–21.. PMID:12202009 link1

[13] Dani?ovi? ?, Bohá? M, Zamborsky R, Oravcová L, Provazníková Z, Cs?b?nyeiová M, et alComparative analysis of mesenchymal stromal cells from different tissue sources in respect to articular cartilage tissue engineering. Gen Physiol Biophys 2016;35(2):207–14 link1

[14] Caminal M, Peris D, Fonseca C, Barrachina J, Codina D, Rabanal RM, et alCartilage resurfacing potential of PLGA scaffolds loaded with autologous cells from cartilage, fat, and bone marrow in an ovine model of osteochondral focal defect. Cytotechnology 2016;68(4):907–19 link1

[15] Lietman SA. Induced pluripotent stem cells in cartilage repair. World J Orthop 2016;7(3):149–55 link1

[16] Zhao G, Yin S, Liu G, Cen L, Sun J, Zhou H, et alIn vitro engineering of fibrocartilage using CDMP1 induced dermal fibroblasts and polyglycolide. Biomaterials 2009;30(19):3241–50 link1

[17] El Sayed K, Haisch A, John T, Marzahn U, Lohan A, Müller RD, et alHeterotopic autologous chondrocyte transplantation—a realistic approach to support articular cartilage repair? Tissue Eng Part B Rev 2010;16(6):603–16 link1

[18] Lohan A, Marzahn U, El Sayed K, Haisch A, Müller RD, Kohl B, et alOsteochondral articular defect repair using auricle-derived autologous chondrocytes in a rabbit model. Ann Anat 2014;196(5):317–26 link1

[19] Van Osch GJ, Mandl EW, Jahr H, Koevoet W, Nolst-Trenité G, Verhaar JA. Considerations on the use of ear chondrocytes as donor chondrocytes for cartilage tissue engineering. Biorheology 2004;41(3–4):411–21 link1

[20] El Sayed K, Marzahn U, John T, Hoyer M, Zreiqat H, Witthuhn A, et alPGA-associated heterotopic chondrocyte cocultures: implications of nasoseptal and auricular chondrocytes in articular cartilage repair. J Tissue Eng Regen Med 2013;7(1):61–72 link1

[21] Dehne T, Karlsson C, Ringe J, Sittinger M, Lindahl A. Chondrogenic differentiation potential of osteoarthritic chondrocytes and their possible use in matrix-associated autologous chondrocyte transplantation. Arthritis Res Ther 2009;11(5):R133 link1

[22] Schrobback K, Klein TJ, Crawford R, Upton Z, Malda J, Leavesley DI. Effects of oxygen and culture system on in vitro propagation and redifferentiation of osteoarthritic human articular chondrocytes. Cell Tissue Res 2012;347(3):649–63 link1

[23] Oda T, Sakai T, Hiraiwa H, Hamada T, Ono Y, Nakashima M, et alOsteoarthritis-derived chondrocytes are a potential source of multipotent progenitor cells for cartilage tissue engineering. Biochem Biophys Res Commun 2016;479(3):469–75 link1

[24] Frondoza C, Sohrabi A, Hungerford D. Human chondrocytes proliferate and produce matrix components in microcarrier suspension culture. Biomaterials 1996;17(9):879–88 link1

[25] ?etinkaya G, Kahraman AS, Gümü?derelio?lu M, Arat S, Onur MA. Derivation, characterization and expansion of fetal chondrocytes on different microcarriers. Cytotechnology 2011;63(6):633–43 link1

[26] Grogan SP, Barbero A, Diaz-Romero J, Cleton-Jansen AM, Soeder S, Whiteside R, et alIdentification of markers to characterize and sort human articular chondrocytes with enhanced in vitro chondrogenic capacity. Arthritis Rheum 2007;56(2):586–95 link1

[27] Appel B, Baumer J, Eyrich D, Sarhan H, Toso S, Englert C, et al. Synergistic effects of growth and differentiation factor-5 (GDF-5) and insulin on expanded chondrocytes in a 3-D environment. Osteoarthritis Cartilage 2009;17(11):1503–12 link1

[28] Egli RJ, Bastian JD, Ganz R, Hofstetter W, Leunig Met alHypoxic expansion promotes the chondrogenic potential of articular chondrocytes. J Orthop Res 2008;26(7):977–85 link1

[29] Huang BJ, Hu JC, Athanasiou KA. Effects of passage number and post-expansion aggregate culture on tissue engineered, self-assembled neocartilage. Acta Biomater 2016;43:150–9 link1

[30] Zhou G, Liu W, Cui L, Wang X, Liu T, Cao Y. Repair of porcine articular osteochondral defects in non-weightbearing areas with autologous bone marrow stromal cells. Tissue Eng 2006;12(11):3209–21 link1

[31] Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et alMultilineage potential of adult human mesenchymal stem cells. Science 1999;284(5411):143–7 link1

[32] Yoshimura H, Muneta T, Nimura A, Yokoyama A, Koga H, Sekiya I. Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell Tissue Res 2007;327(3):449–62 link1

[33] Uccelli A, Pistoia V, Moretta L. Mesenchymal stem cells: a new strategy for immunosuppression? Trends Immunol 2007;28(5):219–26 link1

[34] Du W, Reppel L, Leger L, Schenowitz C, Huselstein C, Bensoussan D, et alMesenchymal stem cells derived from human bone marrow and adipose tissue maintain their immunosuppressive properties after chondrogenic differentiation: role of HLA-G. Stem Cells Dev 2016;25(19):1454–69 link1

[35] Bomer N, den Hollander W, Suchiman H, Houtman E, Slieker RC, Heijmans BT, et alNeo-cartilage engineered from primary chondrocytes is epigenetically similar to autologous cartilage, in contrast to using mesenchymal stem cells. Osteoarthritis Cartilage 2016;24(8):1423–30 link1

[36] Cushing MC, Anseth KS. Hydrogel cell cultures. Science 2007;316(5828):1133–4 link1

[37] Benya PD, Shaffer JD. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 1982;30(1):215–24 link1

[38] Kesti M, Müller M, Becher J, Schnabelrauch M, D’Este M, Eglin D, et alA versatile bioink for three-dimensional printing of cellular scaffolds based on thermally and photo-triggered tandem gelation. Acta Biomater 2015;11:162–72 link1

[39] Markstedt K, Mantas A, Tournier I, Martínez ávila H, H?gg D, Gatenholm P. 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules 2015;16(5):1489–96 link1

[40] Abbadessa A, Blokzijl MM, Mouser VH, Marica P, Malda J, Hennink WE, et alA thermo-responsive and photo-polymerizable chondroitin sulfate-based hydrogel for 3D printing applications. Carbohydr Polym 2016;149:163–74 link1

[41] Lee H, Park TG. Photo-crosslinkable, biomimetic, and thermo-sensitive Pluronic grafted hyaluronic acid copolymers for injectable delivery of chondrocytes. J Biomed Mater Res A 2009;88A(3):797–806 link1

[42] Fedorovich NE, Oudshoorn MH, van Geemen D, Hennink WE, Alblas J, Dhert WJ. The effect of photopolymerization on stem cells embedded in hydrogels. Biomaterials 2009;30(3):344–53 link1

[43] Mellati A, Fan CM, Tamayol A, Annabi N, Dai S, Bi J, et alMicroengineered 3D cell-laden thermoresponsive hydrogels for mimicking cell morphology and orientation in cartilage tissue engineering. Biotechnol Bioeng 2017;114(1):217–31 link1

[44] Liu H, Liu J, Qi C, Fang Y, Zhang L, Zhuo R, et alThermosensitive injectable in-situ forming carboxymethyl chitin hydrogel for three-dimensional cell culture. Acta Biomater 2016;35:228–37 link1

[45] Kopesky PW, Vanderploeg EJ, Sandy JS, Kurz B, Grodzinsky AJ. Self-assembling peptide hydrogels modulate in vitro chondrogenesis of bovine bone marrow stromal cells. Tissue Eng Part A 2010;16(2):465–77 link1

[46] Mendes AC, Baran ET, Reis RL, Azevedo HS. Self-assembly in nature: using the principles of nature to create complex nanobiomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2013;5(6):582–612 link1

[47] Florine EM, Miller RE, Liebesny PH, Mroszczyk KA, Lee RT, Patwari P, et alDelivering heparin-binding insulin-like growth factor 1 with self-assembling peptide hydrogels. Tissue Eng Part A 2015;21(3–4):637–46 link1

[48] Roach BL, Kelmendi-Doko A, Balutis EC, Marra KG, Ateshian GA, Hung CT. Dexamethasone release from within engineered cartilage as a chondroprotective strategy against interleukin-1α. Tissue Eng Part A 2016;22(7–8):621–32.. PMID:26956216 link1

[49] Florine EM, Miller RE, Porter RM, Evans CH, Kurz B, Grodzinsky AJ. Effects of dexamethasone on mesenchymal stromal cell chondrogenesis and aggrecanase activity: comparison of agarose and self-assembling peptide scaffolds. Cartilage 2013;4(1):63–74 link1

[50] Chu J, Zeng S, Gao L, Groth T, Li Z, Kong J, et alPoly(L-lactic acid) porous scaffold-supported alginate hydrogel with improved mechanical properties and biocompatibility. Int J Artif Organs 2016;39(8):435–43 link1

[51] Annabi N, Tamayol A, Uquillas JA, Akbari M, Bertassoni LE, Cha C, et al25th anniversary article: rational design and applications of hydrogels in regenerative medicine. Adv Mater 2014;26(1):85–124 link1

[52] Liu W, Cao Y. Application of scaffold materials in tissue reconstruction in immunocompetent mammals: our experience and future requirements. Biomaterials 2007;28(34):5078–86 link1

[53] Kon E, Filardo G, Perdisa F, Venieri G, Marcacci M. Clinical results of multilayered biomaterials for osteochondral regeneration. J Exp Orthop 2014;1:10 link1

[54] Huang H, Zhang X, Hu X, Shao Z, Zhu J, Dai L, et alA functional biphasic biomaterial homing mesenchymal stem cells for in vivo cartilage regeneration. Biomaterials 2014;35(36):9608–19 link1

[55] Ding C, Qiao Z, Jiang W, Li H, Wei J, Zhou G, et alRegeneration of a goat femoral head using a tissue-specific, biphasic scaffold fabricated with CAD/CAM technology. Biomaterials 2013;34(28):6706–16 link1

[56] Ahern BJ, Parvizi J, Boston R, Schaer TP. Preclinical animal models in single site cartilage defect testing: a systematic review. Osteoarthritis Cartilage 2009;17(6):705–13 link1

[57] Malfait AM, Little CB. On the predictive utility of animal models of osteoarthritis. Arthritis Res Ther 2015;17:225 link1

[58] Mollon B, Kandel R, Chahal J, Theodoropoulos J. The clinical status of cartilage tissue regeneration in humans. Osteoarthritis Cartilage 2013;21(12):1824–33 link1

[59] Huang BJ, Hu JC, Athanasiou KA. Cell-based tissue engineering strategies used in the clinical repair of articular cartilage. Biomaterials 2016;98:1–22 link1

[60] Santoro R, Olivares AL, Brans G, Wirz D, Longinotti C, Lacroix D, et alBioreactor based engineering of large-scale human cartilage grafts for joint resurfacing. Biomaterials 2010;31(34):8946–52 link1

[61] Dickhut A, Gottwald E, Steck E, Heisel C, Richter W. Chondrogenesis of mesenchymal stem cells in gel-like biomaterials in vitro and in vivo. Front Biosci 2008;13:4517–28 link1

[62] De Bari C, Dell’Accio F, Luyten FP. Failure of in vitro-differentiated mesenchymal stem cells from the synovial membrane to form ectopic stable cartilage in vivo. Arthritis Rheum 2004;50(1):142–50 link1

[63] Liu K, Zhou G, Liu W, Zhang W, Cui L, Liu X, et alThe dependence of in vivo stable ectopic chondrogenesis by human mesenchymal stem cells on chondrogenic differentiation in vitro. Biomaterials 2008;29(14):2183–92 link1

[64] Kamil SH, Vacanti MP, Vacanti CA, Eavey RD. Microtia chondrocytes as a donor source for tissue-engineered cartilage. Laryngoscope 2004;114(12):2187–90 link1

[65] Melgarejo-Ramírez Y, Sánchez-Sánchez R, García-López J, Brena-Molina AM, Gutiérrez-Gómez C, Ibarra C, et alCharacterization of pediatric microtia cartilage: a reservoir of chondrocytes for auricular reconstruction using tissue engineering strategies. Cell Tissue Bank 2016;17(3):481–9 link1

[66] Zhang L, He A, Yin Z, Yu Z, Luo X, Liu W, et alRegeneration of human-ear-shaped cartilage by co-culturing human microtia chondrocytes with BMSCs. Biomaterials 2014;35(18):4878–87 link1

[67] Tay AG, Farhadi J, Suetterlin R, Pierer G, Heberer M, Martin I. Cell yield, proliferation, and postexpansion differentiation capacity of human ear, nasal, and rib chondrocytes. Tissue Eng 2004;10(5–6):762–70 link1

[68] Dickhut A, Pelttari K, Janicki P, Wagner W, Eckstein V, Egermann M, et alCalcification or dedifferentiation: requirement to lock mesenchymal stem cells in a desired differentiation stage. J Cell Physiol 2009;219(1):219–26 link1

[69] Ko CY, Ku KL, Yang SR, Lin TY, Peng S, Peng YS, et alIn vitro and in vivo co-culture of chondrocytes and bone marrow stem cells in photocrosslinked PCL-PEG -PCL hydrogels enhances cartilage formation. J Tissue Eng Regen Med 2016;10(10):E485–96 link1

[70] Liu X, Sun H, Yan D, Zhang L, Lv X, Liu T, et alIn vivo ectopic chondrogenesis of BMSCs directed by mature chondrocytes. Biomaterials 2010;31(36):9406–14 link1

[71] Kang N, Liu X, Yan L, Wang Q, Cao Y, Xiao R. Different ratios of bone marrow mesenchymal stem cells and chondrocytes used in tissue-engineered cartilage and its application for human ear-shaped substitutes in vitro. Cells Tissues Organs 2013;198(5):357–66 link1

[72] Wu L, Leijten JC, Georgi N, Post JN, van Blitterswijk CA, Karperien M. Trophic effects of mesenchymal stem cells increase chondrocyte proliferation and matrix formation. Tissue Eng Part A 2011;17(9–10):1425–36 link1

[73] Wu L, Prins HJ, Helder MN, van Blitterswijk CA, Karperien M. Trophic effects of mesenchymal stem cells in chondrocyte co-cultures are independent of culture conditions and cell sources. Tissue Eng Part A 2012;18(15–16):1542–51 link1

[74] de Windt TS, Saris DB, Slaper-Cortenbach IC, van Rijen MH, Gawlitta D, Creemers LB, et alDirect cell-cell contact with chondrocytes is a key mechanism in multipotent mesenchymal stromal cell-mediated chondrogenesis. Tissue Eng Part A 2015;21(19–20):2536–47 link1

[75] Yanaga H, Imai K, Fujimoto T, Yanaga K. Generating ears from cultured autologous auricular chondrocytes by using two-stage implantation in treatment of microtia. Plast Reconstr Surg 2009;124(3):817–25 link1

[76] Yanaga H, Imai K, Tanaka Y, Yanaga K. Two-stage transplantation of cell-engineered autologous auricular chondrocytes to regenerate chondrofat composite tissue: clinical application in regenerative surgery. Plast Reconstr Surg 2013;132(6):1467–77 link1

[77] Weidenbecher M, Tucker HM, Awadallah A, Dennis JE. Fabrication of a neotrachea using engineered cartilage. Laryngoscope 2008;118(4):593–8 link1

[78] Weidenbecher M, Tucker HM, Gilpin DA, Dennis JE. Tissue-engineered trachea for airway reconstruction. Laryngoscope 2009;119(11):2118–23 link1

[79] Bichara DA, Pomerantseva I, Zhao X, Zhou L, Kulig KM, Tseng A, et alSuccessful creation of tissue-engineered autologous auricular cartilage in an immunocompetent large animal model. Tissue Eng Part A 2014;20(1–2):303–12 link1

[80] Pomerantseva I, Bichara DA, Tseng A, Cronce MJ, Cervantes TM, Kimura AM, et alEar-shaped stable auricular cartilage engineered from extensively expanded chondrocytes in an immunocompetent experimental animal model. Tissue Eng Part A 2016;22(3–4):197–207 link1

[81] Schwarz S, Koerber L, Elsaesser AF, Goldberg-Bockhorn E, Seitz AM, Dürselen L, et alDecellularized cartilage matrix as a novel biomatrix for cartilage tissue-engineering applications. Tissue Eng Part A 2012;18(21–22):2195–209 link1

[82] Luo X, Zhou G, Liu W, Zhang WJ, Cen L, Cui L, et alIn vitro precultivation alleviates post-implantation inflammation and enhances development of tissue-engineered tubular cartilage. Biomed Mater 2009;4(2):025006 link1

[83] Liu Y, Li D, Yin Z, Luo X, Liu W, Zhang W, et alProlonged in vitro precultivation alleviates post-implantation inflammation and promotes stable subcutaneous cartilage formation in a goat model. Biomed Mater 2016;12(1):015006 link1

[84] Zhou L, Pomerantseva I, Bassett EK, Bowley CM, Zhao X, Bichara DA, et alEngineering ear constructs with a composite scaffold to maintain dimensions. Tissue Eng Part A 2011;17(11–12):1573–81 link1

[85] Centola M, Abbruzzese F, Scotti C, Barbero A, Vadalà G, Denaro V, et al. Scaffold-based delivery of a clinically relevant anti-angiogenic drug promotes the formation of in vivo stable cartilage. Tissue Eng Part A 2013;19(17–18):1960–71 link1

[86] Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol 2016;34(3):312–9 link1

[87] Luo X, Liu Y, Zhang Z, Tao R, Liu Y, He A, et alLong-term functional reconstruction of segmental tracheal defect by pedicled tissue-engineered trachea in rabbits. Biomaterials 2013;34(13):3336–44 link1

[88] Haisch A. Ear reconstruction through tissue engineering. Adv Otorhinolaryngol 2010;68:108–19 link1

[89] Cao Y, Vacanti JP, Paige KT, Upton J, Vacanti CA. Transplantation of chondrocytes utilizing a polymer-cell construct to produce tissue-engineered cartilage in the shape of a human ear. Plast Reconstr Surg 1997;100(2):297–302; discussion 303–4 link1

[90] Macchiarini P, Jungebluth P, Go T, Asnaghi MA, Rees LE, Cogan TA, et alClinical transplantation of a tissue-engineered airway. Lancet 2008;372(9655):2023–30 link1

[91] Gonfiotti A, Jaus MO, Barale D, Baiguera S, Comin C, Lavorini F, et alThe first tissue-engineered airway transplantation: 5-year follow-up results. Lancet 2014;383(9913):238–44 link1

[92] Jungebluth P, Alici E, Baiguera S, Blomberg P, Bozóky B, Crowley C, et alTracheobronchial transplantation with a stem-cell-seeded bioartificial nanocomposite: a proof-of-concept study. Lancet 2011;378(9808):1997–2004. Erratum in: Lancet 2016;387(10022):944 ; Lancet 2016;387(10025):1276 link1

[93] Elliott MJ, De Coppi P, Speggiorin S, Roebuck D, Butler CR, Samuel E, et alStem-cell-based, tissue engineered tracheal replacement in a child: a 2-year follow-up study. Lancet 2012;380(9846):994–1000 link1

[94] Fulco I, Miot S, Haug MD, Barbero A, Wixmerten A, Feliciano S, et alEngineered autologous cartilage tissue for nasal reconstruction after tumour resection: an observational first-in-human trial. Lancet 2014;384(9940):337–46 link1

Related Research