Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2017, Volume 3, Issue 1 doi: 10.1016/J.ENG.2017.01.019

From Farming to Engineering: The Microbiota and Allergic Diseases

a University Bourgogne Franche-Comté, Besancon 25030, France
b Allergology Network of Franche-Comté, Besancon 25030, France

Accepted: 2017-02-08 Available online: 2017-02-28

Next Previous

Abstract

The steady increase of IgE-dependent allergic diseases after the Second World War is a unique phenomenon in the history of humankind. Numerous cross-sectional studies, comprehensive longitudinal cohort studies of children living in various types of environment, and mechanistic experimental studies have pointed to the disappearance of “protective factors” related to major changes in lifestyle and environment. A common unifying concept is that of the immunoregulatory role of the gut microbiota. This review focuses on the protection against allergic disorders that is provided by the farming environment and by exposure to microbial diversity. It also questions whether and how microbial bioengineering will be able in the future to restore an interplay that was beneficial to the proper immunological development of children in the past and that was irreversibly disrupted by changes in lifestyle. The protective “farming environment” includes independent and additional influences: contact with animals, stay in barns/stables, and consumption of unprocessed milk and milk products, by mothers during pregnancy and by children in early life. More than the overall quantity of microbes, the biodiversity of the farm microbial environment appears to be crucial for this protection, as does the biodiversity of the gut microbiota that it may provide. Use of conventional probiotics, especially various species or strains of Lactobacillus and Bifidobacterium, has not fulfilled the expectations of allergists and pediatricians to prevent allergy. Among the specific organisms present in cowsheds that could be used for prevention, Acinetobacter (A.) lwoffii F78, Lactococcus (L.) lactis G121, and Staphylococcus (S.) sciuri W620 seem to be the most promising, based on experimental studies in mouse models of allergic respiratory diseases. However, the development of a new generation of probiotics based on very productive research on the farming environment faces several obstacles that cannot be overcome without a close collaboration between microbiologists, immunologists, and bioengineers, as well as pediatricians, allergists, specialists of clinical trials, and ethical committees.

Figures

Fig. 1

References

[ 1 ] von Mutius E. The rising trends in asthma and allergic disease. Clin Exp Allergy 1998;28(Suppl 5):45–9; discussion 50–1 link1

[ 2 ] Williams H, Robertson C, Stewart A, Aït-Khaled N, Anabwani G, Anderson R, et alWorldwide variations in the prevalence of symptoms of atopic eczema in the International Study of Asthma and Allergies in Childhood. J Allergy Clin Immunol 1999;103(1):125–38 link1

[ 3 ] Strachan D, Sibbald B, Weiland S, Ait-Khaled N, Anabwani G, Anderson HR, et alWorldwide variations in prevalence of symptoms of allergic rhinoconjunctivitis in children: the International Study of Asthma and Allergies in Childhood (ISAAC). Pediatr Allergy Immunol 1997;8(4):161–8 link1

[ 4 ] Braun-Fahrländer C, Gassner M, Grize L, Neu U, Sennhauser FH, Varonier HS, et alPrevalence of hay fever and allergic sensitization in farmer’s children and their peers living in the same rural community. Clin Exp Allergy 1999;29(1):28–34 link1

[ 5 ] Braun-Fahrländer C, Riedler J, Herz U, Eder W, Waser M, Grize L, et alEnvironmental exposure to endotoxin and its relation to asthma in school-age children. N Engl J Med 2002;347(12):869–77 link1

[ 6 ] Vrijheid M, Casas M, Bergström A, Carmichael A, Cordier S, Eggesbø M, et alEuropean birth cohorts for environmental health research. Environ Health Perspect 2012;120(1):29–37 link1

[ 7 ] von Mutius E, Schmid S; the PASTURE Study Group. The PASTURE project: EU support for the improvement of knowledge about risk factors and preventive factors for atopy in Europe. Allergy 2006;61(4):407–13 link1

[ 8 ] Schaub B, Vercelli D. Environmental protection from allergic diseases: from humans to mice and back. Curr Opin Immunol 2015;36:88–93 link1

[ 9 ] Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-bacterial mutualism in the human intestine. Science 2005;307(5717):1915–20 link1

[10] Gao J, Wu H, Liu J. Importance of gut microbiota in health and diseases of new born infants. Exp Ther Med 2016;12(1):28–32 link1

[11] Ring J. Akdis C, Behrendt H, Lauener RP, Schäppi G, Akdis M, et alDavos declaration: allergy as a global problem. Allergy 2012;67(2):141–3. Erratum in: Allergy 2012;67(5):712 link1

[12] Riedler J, Braun-Fahrländer C, Eder W, Schreuer M, Waser M, Maisch S, et alExposure to farming in early life and development of asthma and allergy: a cross-sectional survey. Lancet 2001;358(9288):1129–33 link1

[13] Alfvén T, Braun-Fahrländer C, Brunekreef B, von Mutius E, Riedler J, Scheynius A, et alAllergic diseases and atopic sensitization in children related to farming and anthroposophic lifestyle—the PARSIFAL study. Allergy 2006;61(4):414–21 link1

[14] Genuneit J, Büchele G, Waser M, Kovacs K, Debinska A, Boznanski A, et alThe GABRIEL advanced surveys: study design, participation and evaluation of bias. Paediatr Perinat Epidemiol 2011;25(5):436–47 link1

[15] Wong GWK, Ko FWS, Hui DSC, Fok TF, Carr D, von Mutius E, et alFactors associated with difference in prevalence of asthma in children from three cities in China: multicentre epidemiological survey. BMJ 2004;329(7464):486 link1

[16] Schröder PC, Li J, Wong GWK, Schaub B. The rural-urban enigma of allergy: what can we learn from studies around the world? Pediatr Allergy Immunol 2015;26(2):95–102 link1

[17] Wong GWK, von Mutius E, Douwes J, Pearce N. Environmental determinants associated with the development of asthma in childhood. Int J Tuberc Lung Dis 2006;10(3):242–51.

[18] Osborn DA, Sinn JKH. Probiotics in infants for prevention of allergic disease and food hypersensitivity. Cochrane Database Syst Rev 2007;(4):CD006475 link1

[19] Fiocchi A, Pawankar R, Cuello-Garcia C, Ahn K, Al-Hammadi S, Agarwal A, et alWorld allergy organization—McMaster University guidelines for allergic disease prevention (GLAD-P): probiotics. World Allergy Organ J 2015;8(1):4 link1

[20] Forsberg A, West CE, Prescott SL, Jenmalm MC. Pre- and probiotics for allergy prevention: time to revisit recommendations? Clin Exp Allergy 2016;46(12):1506–21 link1

[21] West CE. Probiotics for allergy prevention. Benef Microbes 2016;7(2):171–9 link1

[22] Legatzki A, Rösler B, von Mutius E. Microbiome diversity and asthma and allergy risk. Curr Allergy Asthma Rep 2014;14(10):466 link1

[23] Depner M, Ege MJ, Cox MJ, Dwyer S, Walker AW, Birzele LT, et alBacterial microbiota of the upper respiratory tract and childhood asthma. J Allergy Clin Immunol. Epub 2016 Jul 27 link1

[24] Cui L, Morris A, Huang L, Beck JM, Twigg HL III, von Mutius E, et alThe microbiome and the lung. Ann Am Thorac Soc 2014;11(Suppl 4):S227–32 link1

[25] Kong HH, Oh J, Deming C, Conlan S, Grice EA, Beatson MA, et alTemporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res 2012;22(5):850–9 link1

[26] Findley K, Oh J, Yang J, Conlan S, Deming C, Meyer JA, et alTopographic diversity of fungal and bacterial communities in human skin. Nature 2013;498(7454):367–70 link1

[27] McGuire MK, McGuire MA. Got bacteria? The astounding, yet not-so-surprising, microbiome of human milk. Curr Opin Biotechnol 2017;44:63–8 link1

[28] Coca A, Cooke RA. On the classification of the phenomena of hypersensitiveness. J Immunol Baltim Md 1923;8(3):163–71.

[29] Blumenthal MN, Amos DB. Genetic and immunologic basis of atopic responses. Chest 1987;91(6):176S–84S link1

[30] Cookson WO. Genetic aspects of atopic allergy. Allergy 1998;53(s45):9–14 link1

[31] Dold S, Wjst M, von Mutius E, Reitmeir P, Stiepel E. Genetic risk for asthma, allergic rhinitis, and atopic dermatitis. Arch Dis Child 1992;67(8):1018–22 link1

[32] Edfors-Lubs ML. Allergy in 7000 twin pairs. Acta Allergol 1971;26(4):249–85 link1

[33] Lluis A, Schedel M, Liu J, Illi S, Depner M, von Mutius E, et alAsthma-associated polymorphisms in 17q21 influence cord blood ORMDL3 and GSDMA gene expression and IL-17 secretion. J Allergy Clin Immunol 2011;127(6):1587–94.e6 link1

[34] Leung TF, Ko FWS, Sy HY, Tsui SKW, Wong GWK. Differences in asthma genetics between Chinese and other populations. J Allergy Clin Immunol 2014;133(1):42–8 link1

[35] Yu X, Yu C, Ren Z, Deng Y, Song J, Zhang H, et alGenetic variants of 17q21 are associated with childhood-onset asthma and related phenotypes in a northeastern Han Chinese population: a case-control study. Tissue Antigens 2014;83(5):330–6 link1

[36] Moffatt MF, Gut IG, Demenais F, Strachan DP, Bouzigon E, Heath S, et alA large-scale, consortium-based genomewide association study of asthma. N Engl J Med 2010;363(13):1211–21 link1

[37] Zhang Y, Moffatt MF, Cookson WOC. Genetic and genomic approaches to asthma: new insights for the origins. Curr Opin Pulm Med 2012;18(1):6–13 link1

[38] Nakayama T, Hirahara K, Onodera A, Endo Y, Hosokawa H, Shinoda K, et alTh2 cells in health and disease. Annu Rev Immunol. Epub 2016 Nov 28.

[39] von Mutius E. Environmental factors influencing the development and progression of pediatric asthma. J Allergy Clin Immunol 2002;109(6):S525–32 link1

[40] Scholtens S, Postma D, Moffatt M, Panasevich S, Granell R, Henderson A, et alNovel childhood asthma genes interact with in utero and early-life tobacco smoke exposure. J Allergy Clin Immunol 2014;133(3):885–8 link1

[41] Estelle F, Simons R, editors. Ancestors of allergy. New York: Global Medical Communications; 1994.

[42] Kabesch M, Schaal W, Nicolai T, von Mutius E. Lower prevalence of asthma and atopy in Turkish children living in Germany. Eur Respir J 1999;13(3):577–82 link1

[43] Leung R. Asthma and migration. Respirology 1996;1(2):123–6 link1

[44] Leung RC, Carlin JB, Burdon JG, Czarny D. Asthma, allergy and atopy in Asian immigrants in Melbourne. Med J Aust 1994;161(7):418–25.

[45] Zhao T, Wang A, Chen Y, Xiao M, Duo L, Liu G, et alPrevalence of childhood asthma, allergic rhinitis and eczema in Urumqi and Beijing. J Paediatr Child Health 2000;36(2):128–33 link1

[46] von Mutius E. The environmental predictors of allergic disease. J Allergy Clin Immunol 2000;105(1):9–19 link1

[47] Greer FR, Sicherer SH, Burks AW; American Academy of Pediatrics Committee on Nutrition, American Academy of Pediatrics Section on Allergy and Immunology. Effects of early nutritional interventions on the development of atopic disease in infants and children: the role of maternal dietary restriction, breastfeeding, timing of introduction of complementary foods, and hydrolyzed formulas. Pediatrics 2008;121(1):183–91 link1

[48] Dogaru CM, Nyffenegger D, Pescatore AM, Spycher BD, Kuehni CE. Breastfeeding and childhood asthma: systematic review and meta-analysis. Am J Epidemiol 2014;179(10):1153–67 link1

[49] Strachan DP. Hay fever, hygiene, and household size. BMJ 1989;299(6710):1259–60 link1

[50] Matricardi PM, Franzinelli F, Franco A, Caprio G, Murru F, Cioffi D, et alSibship size, birth order, and atopy in 11,371 Italian young men. J Allergy Clin Immunol 1998;101(4):439–44 link1

[51] von Mutius E, Martinez FD, Fritzsch C, Nicolai T, Reitmeir P, Thiemann HH. Skin test reactivity and number of siblings. BMJ 1994;308(6930):692–5 link1

[52] Matricardi PM, Rosmini F, Ferrigno L, Nisini R, Rapicetta M, Chionne P, et alCross sectional retrospective study of prevalence of atopy among Italian military students with antibodies against hepatitis a virus. BMJ 1997;314(7086):999–1003 link1

[53] Rosenlund H, Bergström A, Alm JS, Swartz J, Scheynius A, van Hage M, et alAllergic disease and atopic sensitization in children in relation to measles vaccination and measles infection. Pediatrics 2009;123(3):771–8 link1

[54] Radon K, Windstetter D, Eckart J, Dressel H, Leitritz L, Reichert J, et alFarming exposure in childhood, exposure to markers of infections and the development of atopy in rural subjects. Clin Exp Allergy 2004;34(8):1178–83 link1

[55] von Mutius E. Infection: friend or foe in the development of atopy and asthma? The epidemiological evidence. Eur Respir J 2001;18(5):872–81 link1

[56] Schaub B, Lauener R, von Mutius E. The many faces of the hygiene hypothesis. J Allergy Clin Immunol 2006;117(5):969–77 link1

[57] Okada H, Kuhn C, Feillet H, Bach JF. The “hygiene hypothesis” for autoimmune and allergic diseases: an update. Clin Exp Immunol 2010;160(1):1–9 link1

[58] Logan AC, Jacka FN, Craig JM, Prescott SL. The microbiome and mental health: looking back, moving forward with lessons from allergic diseases. Clin Psychopharmacol Neurosci 2016;14(2):131–47 link1

[59] Prince BT, Mandel MJ, Nadeau K, Singh AM. Gut microbiome and the development of food allergy and allergic disease. Pediatr Clin North Am 2015;62(6):1479–92 link1

[60] Yazdanbakhsh M, Kremsner PG, van Ree R. Allergy, parasites, and the hygiene hypothesis. Science 2002;296(5567):490–4 link1

[61] Yazdanbakhsh M, van den Biggelaar A, Maizels RM. Th2 responses without atopy: immunoregulation in chronic helminth infections and reduced allergic disease. Trends Immunol 2001;22(7):372–7 link1

[62] von Mutius E, Sherrill DL, Fritzsch C, Martinez FD, Lebowitz MD. Air pollution and upper respiratory symptoms in children from East Germany. Eur Respir J 1995;8(5):723–8.

[63] von Mutius E, Weiland SK, Fritzsch C, Duhme H, Keil U. Increasing prevalence of hay fever and atopy among children in Leipzig, East Germany. Lancet 1998;351(9106):862–6 link1

[64] Vartiainen E, Petäys T, Haahtela T, Jousilahti P, Pekkanen J. Allergic diseases, skin prick test responses, and IgE levels in North Karelia, Finland, and the Republic of Karelia, Russia. J Allergy Clin Immunol 2002;109(4):643–8 link1

[65] Bråbäck L, Breborowicz A, Julge K, Knutsson A, Riikjärv MA, Vasar M, et alRisk factors for respiratory symptoms and atopic sensitisation in the Baltic area. Arch Dis Child 1995;72(6):487–93 link1

[66] Ege MJ, Herzum I, Büchele G, Krauss-Etschmann S, Lauener RP, Roponen M, et alPrenatal exposure to a farm environment modifies atopic sensitization at birth. J Allergy Clin Immunol 2008;122(2):407–12.e4 link1

[67] Pfefferle PI, Büchele G, Blümer N, Roponen M, Ege MJ, Krauss-Etschmann S, et alCord blood cytokines are modulated by maternal farming activities and consumption of farm dairy products during pregnancy: the PASTURE study. J Allergy Clin Immunol 2010;125(1):108–15.e3 link1

[68] von Mutius E, Illi S, Nicolai T, Martinez FD. Relation of indoor heating with asthma, allergic sensitisation, and bronchial responsiveness: survey of children in South Bavaria. BMJ 1996;312(7044):1448–50 link1

[69] von Ehrenstein OS, von Mutius E, Illi S, Baumann L, Böhm O, von Kries R. Reduced risk of hay fever and asthma among children of farmers. Clin Exp Allergy 2000;30(2):187–93 link1

[70] von Mutius E, Vercelli D. Farm living: effects on childhood asthma and allergy. Nat Rev Immunol 2010;10(12):861–8 link1

[71] von Mutius E.[A traditional farming environment—a prophylactic factor against allergies]. Dtsch Med Wochenschr 2000;125(31–32):923. German.

[72] Vuitton DA, Dalphin JC. Hygiene and allergy: are farm microorganisms protective? J Mycol Med 2006;16(4):220–38 link1

[73] Braun-Fahrländer CH. Allergic diseases in farmers’ children. Pediatr Allergy Immunol 2000;11(Suppl 13):19–22 link1

[74] Kilpeläinen M, Terho EO, Helenius H, Koskenvuo M. Farm environment in childhood prevents the development of allergies. Clin Exp Allergy 2000;30(2):201–8 link1

[75] Braun-Fahrländer C. The role of the farm environment and animal contact for the development of asthma and allergies. Clin Exp Allergy 2001;31(12):1799–803 link1

[76] Campbell B, Raherison C, Lodge CJ, Lowe AJ, Gislason T, Heinrich J, et alThe effects of growing up on a farm on adult lung function and allergic phenotypes: an international population-based study. Thorax. Epub 2016 Sep 26 link1

[77] Christensen SH, Timm S, Janson C, Benediktsdóttir B, Forsberg B, Holm M, et alA clear urban-rural gradient of allergic rhinitis in a population-based study in Northern Europe. Eur Clin Respir J 2016;3(1):33463 link1

[78] Sudre B, Vacheyrou M, Braun-Fahrländer C, Normand AC, Waser M, Reboux G, et alHigh levels of grass pollen inside European dairy farms: a role for the allergy-protective effects of environment? Allergy 2009;64(7):1068–73 link1

[79] Normand AC, Sudre B, Vacheyrou M, Depner M, Wouters IM, Noss I, et alAirborne cultivable microflora and microbial transfer in farm buildings and rural dwellings. Occup Environ Med 2011;68(11):849–55 link1

[80] Waser M, Schierl R, von Mutius E, Maisch S, Carr D, Riedler J, et alDeterminants of endotoxin levels in living environments of farmers’ children and their peers from rural areas. Clin Exp Allergy 2004;34(3):389–97 link1

[81] Waser M, von Mutius E, Riedler J, Nowak D, Maisch S, Carr D, et alExposure to pets, and the association with hay fever, asthma, and atopic sensitization in rural children. Allergy 2005;60(2):177–84 link1

[82] Douwes J, Cheng S, Travier N, Cohet C, Niesink A, McKenzie J, et alFarm exposure in utero may protect against asthma, hay fever and eczema. Eur Respir J 2008;32(3):603–11 link1

[83] Illi S, Depner M, Genuneit J, Horak E, Loss G, Strunz-Lehner C, et alProtection from childhood asthma and allergy in Alpine farm environments—the GABRIEL advanced studies. J Allergy Clin Immunol 2012;129(6):1470–7.e6 link1

[84] Douwes J, Travier N, Huang K, Cheng S, McKenzie J, Le Gros G, et alLifelong farm exposure may strongly reduce the risk of asthma in adults. Allergy 2007;62(10):1158–65 link1

[85] House JS, Wyss AB, Hoppin JA, Richards M, Long S, Umbach DM, et alEarly-life farm exposures and adult asthma and atopy in the Agricultural Lung Health Study. J Allergy Clin Immunol. Epub2016 Nov 11 link1

[86] Schaub B, Liu J, Höppler S, Haug S, Sattler C, Lluis A, et alImpairment of T-regulatory cells in cord blood of atopic mothers. J Allergy Clin Immunol 2008;121(6):1491–9.e13 link1

[87] Lluis A, Ballenberger N, Illi S, Schieck M, Kabesch M, Illig T, et alRegulation of TH17 markers early in life through maternal farm exposure. J Allergy Clin Immunol 2014;133(3):864–71 link1

[88] Schröder PC, Illi S, Casaca VI, Lluis A, Böck A, Roduit C, et alA switch in regulatory T cells through farm exposure during immune maturation in childhood. Allergy. Epub 2016 Nov 17 link1

[89] Eder W, von Mutius E. Hygiene hypothesis and endotoxin: what is the evidence? Curr Opin Allergy Clin Immunol 2004;4(2):113–7 link1

[90] von Mutius E, Braun-Fahrländer C, Schierl R, Riedler J, Ehlermann S, Maisch S, et alExposure to endotoxin or other bacterial components might protect against the development of atopy. Clin Exp Allergy 2000;30(9):1230–4 link1

[91] Karadag B, Ege MJ, Scheynius A, Waser M, Schram-Bijkerk D, van Hage M, et alEnvironmental determinants of atopic eczema phenotypes in relation to asthma and atopic sensitization. Allergy 2007;62(12):1387–93 link1

[92] Roussel S, Sudre B, Reboux G, Waser M, Buchele G, Vacheyrou M, et alExposure to moulds and actinomycetes in Alpine farms: a nested environmental study of the PASTURE cohort. Environ Res 2011;111(6):744–50 link1

[93] Feng M, Yang Z, Pan L, Lai X, Xian M, Huang X, et alAssociations of early life exposures and environmental factors with asthma among children in rural and urban areas of Guangdong, China. Chest 2016;149(4):1030–41 link1

[94] von Mutius E. Maternal farm exposure/ingestion of unpasteurized cow’s milk and allergic disease. Curr Opin Gastroenterol 2012;28(6):570–6 link1

[95] Braun-Fahrländer C, von Mutius E. Can farm milk consumption prevent allergic diseases? Clin Exp Allergy 2011;41(1):29–35 link1

[96] Waser M, Michels KB, Bieli C, Flöistrup H, Pershagen G, von Mutius E, et alInverse association of farm milk consumption with asthma and allergy in rural and suburban populations across Europe. Clin Exp Allergy 2007;37(5):661–70 link1

[97] Loss G, Apprich S, Waser M, Kneifel W, Genuneit J, Büchele G, et alThe protective effect of farm milk consumption on childhood asthma and atopy: the GABRIELA study. J Allergy Clin Immunol 2011;128(4):766–73.e4 link1

[98] Barnes M, Cullinan P, Athanasaki P, MacNeill S, Hole AM, Harris J, et alCrete: does farming explain urban and rural differences in atopy? Clin Exp Allergy 2001;31(12):1822–8 link1

[99] Wickens K, Lane JM, Fitzharris P, Siebers R, Riley G, Douwes J, et alFarm residence and exposures and the risk of allergic diseases in New Zealand children. Allergy 2002;57(12):1171–9 link1

[100] Schaub B, Liu J, Höppler S, Schleich I, Huehn J, Olek S, et alMaternal farm exposure modulates neonatal immune mechanisms through regulatory T cells. J Allergy Clin Immunol 2009;123(4):774–82.e5 link1

[101] Brick T, Schober Y, Böcking C, Pekkanen J, Genuneit J, Loss G, et alw-3 fatty acids contribute to the asthma-protective effect of unprocessed cow’s milk. J Allergy Clin Immunol 2016;137(6):1699–706.e13 link1

[102] Gehring U, Spithoven J, Schmid S, Bitter S, Braun-Fahrländer C, Dalphin JC, et alEndotoxin levels in cow’s milk samples from farming and non-farming families—the PASTURE study. Environ Int 2008;34(8):1132–6 link1

[103] Peters M, Kauth M, Schwarze J, Körner-Rettberg C, Riedler J, Nowak D, et alInhalation of stable dust extract prevents allergen induced airway inflammation and hyperresponsiveness. Thorax 2006;61(2):134–9 link1

[104] Karvonen AM, Hyvärinen A, Rintala H, Korppi M, Täubel M, Doekes G, et alQuantity and diversity of environmental microbial exposure and development of asthma: a birth cohort study. Allergy 2014;69(8):1092–101 link1

[105] Montel MC, Buchin S, Mallet A, Delbes-Paus C, Vuitton DA, Desmasures N, et alTraditional cheeses: rich and diverse microbiota with associated benefits. Int J Food Microbiol 2014;177:136–54 link1

[106] Böcking C, Harb H, Ege MJ, Zehethofer N, Fischer K, Krauß J, et alBioavailability and allergoprotective capacity of milk-associated conjugated linoleic acid in a murine model of allergic airway inflammation. Int Arch Allergy Immunol 2014;163(3):234–42 link1

[107] Rochat MK, Ege MJ, Plabst D, Steinle J, Bitter S, Braun-Fahrländer C, et alMaternal vitamin D intake during pregnancy increases gene expression of ILT3 and ILT4 in cord blood. Clin Exp Allergy 2010;40(5):786–94 link1

[108] Podoprigora GI, [The gnotobiologic approach to the study of the body’s non-specific resistance to infection]. Arkh Patol 1976;38(3):77–85. Russian.

[109] Dubos RJ, Schaedler RW. The effect of the intestinal flora on the growth rate of mice, and on their susceptibility to experimental infections. J Exp Med 1960;111(3):407–17 link1

[110] Hanna MG, Nettesheim P, Richter CB, Tennant RW. The variable influence of host microflora and intercurrent infections on immunological competence and carcinogenesis. Isr J Med Sci 1973;9(3):229–38.

[111] Glaister JR. Factors affecting the lymphoid cells in the small intestinal epithelium of the mouse. Int Arch Allergy Appl Immunol 1973;45(5):719–30 link1

[112] Ferguson A, Parrott DMV. The effect of antigen deprivation on thymus-dependent and thymus-independent lymphocytes in the small intestine of the mouse. Clin Exp Immunol 1972;12(4):477–88.

[113] Eloy R, Vuitton D, Garaud JC, Vaultier JP, Klein M, Grenier JF. [Peyer’s patches and cellular immunity]. Biol Gastroenterol (Paris) 1975;8(1):73–86. French.

[114] Molloy J, Allen K, Collier F, Tang MLK, Ward AC, Vuillermin P. The potential link between gut microbiota and IgE-mediated food allergy in early life. Int J Environ Res Public Health 2013;10(12):7235–56 link1

[115] Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI. Molecular analysis of commensal host-microbial relationships in the intestine. Science 2001;291(5505):881–4 link1

[116] Kobayashi KS, Chamaillard M, Ogura Y, Henegariu O, Inohara N, Nuñez G, et alNod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 2005;307(5710):731–4 link1

[117] Cash HL, Whitham CV, Behrendt CL, Hooper LV. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 2006;313(5790):1126–30 link1

[118] Molloy MJ, Bouladoux N, Belkaid Y. Intestinal microbiota: shaping local and systemic immune responses. Semin Immunol 2012;24(1):58–66 link1

[119] Mantis NJ, Rol N, Corthésy B. Secretory IgA’s complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunol 2011;4(6):603–11 link1

[120] Palm NW, Rosenstein RK, Medzhitov R. Allergic host defences. Nature 2012;484(7395):465–72 link1

[121] Macpherson AJ, Harris NL. Interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol 2004;4(6):478–85 link1

[122] Gaboriau-Routhiau V, Lécuyer E, Cerf-Bensussan N. Role of microbiota in postnatal maturation of intestinal T-cell responses. Curr Opin Gastroenterol 2011;27(6):502–8 link1

[123] Weiner HL, da Cunha AP, Quintana F, Wu H. Oral tolerance. Immunol Rev 2011;241(1):241–59 link1

[124] Cassani B, Villablanca EJ, De Calisto J, Wang S, Mora JR. Vitamin A and immune regulation: role of retinoic acid in gut-associated dendritic cell education, immune protection and tolerance. Mol Aspects Med 2012;33(1):63–76 link1

[125] Hall JA, Grainger JR, Spencer SP, Belkaid Y. The role of retinoic acid in tolerance and immunity. Immunity 2011;35(1):13–22 link1

[126] Smits HH, van der Vlugt LE, von Mutius E, Hiemstra PS. Childhood allergies and asthma: new insights on environmental exposures and local immunity at the lung barrier. Curr Opin Immunol 2016;42:41–7 link1

[127] Genuneit J, Strachan DP, Büchele G, Weber J, Loss G, Sozanska B, et alThe combined effects of family size and farm exposure on childhood hay fever and atopy. Pediatr Allergy Immunol 2013;24(3):293–8 link1

[128] Ege MJ, Herzum I, Büchele G, Krauss-Etschmann S, Lauener RP, Bitter S, et alSpecific IgE to allergens in cord blood is associated with maternal immunity to Toxoplasma gondii and rubella virus. Allergy 2008;63(11):1505–11 link1

[129] Penders J, Thijs C, Vink C, Stelma FF, Snijders B, Kummeling I, et alFactors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 2006;118(2):511–21 link1

[130] Björkstén B. The intrauterine and postnatal environments. J Allergy Clin Immunol 1999;104(6):1119–27 link1

[131] Jakobsson HE, Abrahamsson TR, Jenmalm MC, Harris K, Quince C, Jernberg C, et alDecreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by caesarean section. Gut 2014;63(4):559–66 link1

[132] Bertrand X, Dufour V, Millon L, Beuvier E, Gbaguidi-Haore H, Piarroux R, et alEffect of cheese consumption on emergence of antimicrobial resistance in the intestinal microflora induced by a short course of amoxicillin-clavulanic acid. J Appl Microbiol 2007;102(4):1052–9.

[133] Mangin I, Lévêque C, Magne F, Suau A, Pochart P. Long-term changes in human colonic Bifidobacterium populations induced by a 5-day oral amoxicillin-clavulanic acid treatment. PLoS One 2012;7(11):e50257 link1

[134] Stokholm J, Schjørring S, Eskildsen CE, Pedersen L, Bischoff AL, Følsgaard N, et alAntibiotic use during pregnancy alters the commensal vaginal microbiota. Clin Microbiol Infect 2014;20(7):629–35 link1

[135] Roduit C, Frei R, Loss G, Büchele G, Weber J, Depner M, et alDevelopment of atopic dermatitis according to age of onset and association with early-life exposures. J Allergy Clin Immunol 2012;130(1):130–6.e5 link1

[136] Sepp E, Julge K, Vasar M, Naaber P, Björksten B, Mikelsaar M. Intestinal microflora of Estonian and Swedish infants. Acta Paediatr 1997; 86 (9):956–61 link1

[137] Björkstén B, Sepp E, Julge K, Voor T, Mikelsaar M. Allergy development and the intestinal microflora during the first year of life. J Allergy Clin Immunol 2001;108(4):516–20 link1

[138] Sjögren YM, Jenmalm MC, Böttcher MF, Björkstén B, Sverremark-Ekström E. Altered early infant gut microbiota in children developing allergy up to 5 years of age. Clin Exp Allergy 2009;39(4):518–26 link1

[139] Böttcher MF, Nordin EK, Sandin A, Midtvedt T, Björkstén B. Microflora-associated characteristics in faeces from allergic and nonallergic infants. Clin Exp Allergy 2000;30(11):1591–6 link1

[140] Kalliomäki M, Kirjavainen P, Eerola E, Kero P, Salminen S, Isolauri E. Distinct patterns of neonatal gut microflora in infants in whom atopy was and was not developing. J Allergy Clin Immunol 2001;107(1):129–34 link1

[141] Björkstén B, Naaber P, Sepp E, Mikelsaar M. The intestinal microflora in allergic Estonian and Swedish 2-year-old children. Clin Exp Allergy 1999;29(3):342–6 link1

[142] Kirjavainen PV, Gibson GR. Healthy gut microflora and allergy: factors influencing development of the microbiota. Ann Med 1999;31(4):288–92 link1

[143] Böttcher MF, Björkstén B, Gustafson S, Voor T, Jenmalm MC. Endotoxin levels in Estonian and Swedish house dust and atopy in infancy. Clin Exp Allergy 2003;33(3):295–300 link1

[144] Björkstén B. Environment and infant immunity. Proc Nutr Soc 1999;58(3):729–32 link1

[145] Abrahamsson TR, Jakobsson HE, Andersson AF, Björkstén B, Engstrand L, Jenmalm MC. Low diversity of the gut microbiota in infants with atopic eczema. J Allergy Clin Immunol 2012;129(2):434–40.e2 link1

[146] Abrahamsson TR, Jakobsson HE, Andersson AF, Björkstén B, Engstrand L, Jenmalm MC. Low gut microbiota diversity in early infancy precedes asthma at school age. Clin Exp Allergy 2014;44(6):842–50 link1

[147] Bisgaard H, Li N, Bonnelykke K, Chawes BLK, Skov T, Paludan-Müller G, et alReduced diversity of the intestinal microbiota during infancy is associated with increased risk of allergic disease at school age. J Allergy Clin Immunol 2011;128(3):646–52.e5 link1

[148] Dicksved J, Flöistrup H, Bergström A, Rosenquist M, Pershagen G, Scheynius A, et alMolecular fingerprinting of the fecal microbiota of children raised according to different lifestyles. Appl Environ Microbiol 2007;73(7):2284–9 link1

[149] Heederik D, von Mutius E. Does diversity of environmental microbial exposure matter for the occurrence of allergy and asthma? J Allergy Clin Immunol 2012;130(1):44–50 link1

[150] Lauener RP, Birchler T, Adamski J, Braun-Fahrländer C, Bufe A, Herz U, et alExpression of CD14 and toll-like receptor 2 in farmers’ and non-farmers’ children. Lancet 2002;360(9331):465–6 link1

[151] Eder W, Klimecki W, Yu L, von Mutius E, Riedler J, Braun-Fahrländer C, et alToll-like receptor 2 as a major gene for asthma in children of European farmers. J Allergy Clin Immunol 2004;113(3):482–8 link1

[152] Eder W, Klimecki W, Yu L, von Mutius E, Riedler J, Braun-Fahrländer C, et alAssociation between exposure to farming, allergies and genetic variation in CARD4/NOD1. Allergy 2006;61(9):1117–24 link1

[153] Ege MJ, Bieli C, Frei R, van Strien RT, Riedler J, Ublagger E, et alPrenatal farm exposure is related to the expression of receptors of the innate immunity and to atopic sensitization in school-age children. J Allergy Clin Immunol 2006;117(4):817–23 link1

[154] Bieli C, Eder W, Frei R, Braun-Fahrländer C, Klimecki W, Waser M, et alA polymorphism in CD14 modifies the effect of farm milk consumption on allergic diseases and CD14 gene expression. J Allergy Clin Immunol 2007;120(6):1308–15 link1

[155] Loss G, Bitter S, Wohlgensinger J, Frei R, Roduit C, Genuneit J, et alPrenatal and early-life exposures alter expression of innate immunity genes: the PASTURE cohort study. J Allergy Clin Immunol 2012;130(2):523–30.e9 link1

[156] Roduit C, Wohlgensinger J, Frei R, Bitter S, Bieli C, Loeliger S, et alPrenatal animal contact and gene expression of innate immunity receptors at birth are associated with atopic dermatitis. J Allergy Clin Immunol 2011;127(1):179–85.e1 link1

[157] Orivuori L, Loss G, Roduit C, Dalphin JC, Depner M, Genuneit J, et alSoluble immunoglobulin A in breast milk is inversely associated with atopic dermatitis at early age: the PASTURE cohort study. Clin Exp Allergy 2014;44(1):102–12 link1

[158] Karlsson H, Hessle C, Rudin A. Innate immune responses of human neonatal cells to bacteria from the normal gastrointestinal flora. Infect Immun 2002;70(12):6688–96 link1

[159] Lundell AC, Andersson K, Josefsson E, Steinkasserer A, Rudin A. Soluble CD14 and CD83 from human neonatal antigen-presenting cells are inducible by commensal bacteria and suppress allergen-induced human neonatal Th2 differentiation. Infect Immun 2007;75(8):4097–104 link1

[160] Kääriö H, Huttunen K, Karvonen AM, Schaub B, von Mutius E, Pekkanen J, et alExposure to a farm environment is associated with T helper 1 and regulatory cytokines at age 4.5 years. Clin Exp Allergy 2016;46(1):71–7 link1

[161] Kääriö H, Nieminen JK, Karvonen AM, Huttunen K, Schröder PC, Vaarala O, et alCirculating dendritic cells, farm exposure and asthma at early age. Scand J Immunol 2016;83(1):18–25 link1

[162] Martikainen MV, Kääriö H, Karvonen A, Schröder PC, Renz H, Kaulek V, et alFarm exposures are associated with lower percentage of circulating myeloid dendritic cell subtype 2 at age 6. Allergy 2015;70(10):1278–87 link1

[163] Roduit C, Frei R, Depner M, Schaub B, Loss G, Genuneit J, et alIncreased food diversity in the first year of life is inversely associated with allergic diseases. J Allergy Clin Immunol 2014;133(4):1056–64.e7 link1

[164] Kalliomäki M, Salminen S, Arvilommi H, Kero P, Koskinen P, Isolauri E. Probiotics in primary prevention of atopic disease: a randomised placebo-controlled trial. Lancet 2001;357(9262):1076–9 link1

[165] Zuccotti G, Meneghin F, Aceti A, Barone G, Callegari ML, Di Mauro A, et alProbiotics for prevention of atopic diseases in infants: systematic review and meta-analysis. Allergy 2015;70(11):1356–71 link1

[166] Cuello-Garcia CA, Brożek JL, Fiocchi A, Pawankar R, Yepes-Nuñez JJ, Terracciano L, et alProbiotics for the prevention of allergy: a systematic review and meta-analysis of randomized controlled trials. J Allergy Clin Immunol 2015;136(4):952–61 link1

[167] Zhang G, Hu H, Liu C, Zhang Q, Shakya S, Li Z. Probiotics for prevention of atopy and food hypersensitivity in early childhood: a PRISMA-compliant systematic review and meta-analysis of randomized controlled trials. Medicine 2016;95(8):e2562 link1

[168] Koletzko S. Probiotics and prebiotics for prevention of food allergy: indications and recommendations by societies and institutions. J Pediatr Gastroenterol Nutr 2016;63(Suppl 1):S9–10.

[169] Gorelik L, Kauth M, Gehlhar K, Bufe A, Holst O, Peters M. Modulation of dendritic cell function by cowshed dust extract. Innate Immun 2008;14(6):345–55 link1

[170] Stiehm M, Bufe A, Peters M. Proteolytic activity in cowshed dust extracts induces C5a release in murine bronchoalveolar lavage fluids which may account for its protective properties in allergic airway inflammation. Thorax 2013;68(1):31–8 link1

[171] Peters M, Kauth M, Scherner O, Gehlhar K, Steffen I, Wentker P, et alArabinogalactan isolated from cowshed dust extract protects mice from allergic airway inflammation and sensitization. J Allergy Clin Immunol 2010;126(3):648–56.e4 link1

[172] Kepert I, Fonseca J, Müller C, Milger K, Hochwind K, Kostric M, et alD-tryptophan from probiotic bacteria influences the gut microbiome and allergic airway disease. J Allergy Clin Immunol. Epub 2016 Sep 23 link1

[173] Kauth M, Heine H. Allergy protection by cowshed bacteria—recent findings and future prospects. Pediatr Allergy Immunol 2016;27(4):340–7 link1

[174] Vogel K, Blümer N, Korthals M, Mittelstädt J, Garn H, Ege M, et alAnimal shed Bacillus licheniformis spores possess allergy-protective as well as inflammatory properties. J Allergy Clin Immunol 2008;122(2):307–12.e8 link1

[175] Debarry J, Garn H, Hanuszkiewicz A, Dickgreber N, Blümer N, von Mutius E, et alAcinetobacter lwoffii and Lactococcus lactis strains isolated from farm cowsheds possess strong allergy-protective properties. J Allergy Clin Immunol 2007;119(6):1514–21 link1

[176] Debarry J, Hanuszkiewicz A, Stein K, Holst O, Heine H. The allergy-protective properties of Acinetobacter lwoffii F78 are imparted by its lipopolysaccharide. Allergy 2010;65(6):690–7 link1

[177] Stein K, Brand S, Jenckel A, Sigmund A, Chen ZJ, Kirschning CJ, et alEndosomal recognition of Lactococcus lactis G121 and its RNA by dendritic cells is key to its allergy-protective effects. J Allergy Clin Immunol 2017;139(2):667–78.e5 link1

[178] Fischer K, Stein K, Ulmer AJ, Lindner B, Heine H, Holst O. Cytokine-inducing lipoteichoic acids of the allergy-protective bacterium Lactococcus lactis G121 do not activate via Toll-like receptor 2. Glycobiology 2011;21(12):1588–95 link1

[179] Conrad ML, Ferstl R, Teich R, Brand S, Blümer N, Yildirim AO, et alMaternal TLR signaling is required for prenatal asthma protection by the nonpathogenic microbe Acinetobacter lwoffii F78. J Exp Med 2009;206(13):2869–77 link1

[180] Brand S, Teich R, Dicke T, Harb H, Yildirim AÖ, Tost J, et alEpigenetic regulation in murine offspring as a novel mechanism for transmaternal asthma protection induced by microbes. J Allergy Clin Immunol 2011;128(3):618–25.e7 link1

[181] Hagner S, Harb H, Zhao M, Stein K, Holst O, Ege MJ, et alFarm-derived Gram-positive bacterium Staphylococcus sciuri W620 prevents asthma phenotype in HDM- and OVA-exposed mice. Allergy 2013;68(3):322–9 link1

Related Research