Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2017, Volume 3, Issue 1 doi: 10.1016/J.ENG.2017.01.020

Emerging Trends for Microbiome Analysis: From Single-Cell Functional Imaging to Microbiome Big Data

a Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
b Center for Microbiome Innovation, Department of Pediatrics, Department of Computer Science and Engineering, University of California San Diego, CA 92093, USA
c Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK
d State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
e University of Chinese Academy of Sciences, Beijing 100049, China

Accepted: 2017-02-01 Available online: 2017-02-28

Next Previous

Abstract

Method development has always been and will continue to be a core driving force of microbiome science. In this perspective, we argue that in the next decade, method development in microbiome analysis will be driven by three key changes in both ways of thinking and technological platforms: ① a shift from dissecting microbiota structureby sequencing to tracking microbiota state, function, and intercellular interaction via imaging; ② a shift from interrogating a consortium or population of cells to probing individual cells; and ③ a shift from microbiome data analysis to microbiome data science. Some of the recent method-development efforts by Chinese microbiome scientists and their international collaborators that underlie these technological trends are highlighted here. It is our belief that the China Microbiome Initiative has the opportunity to deliver outstanding “Made-in-China” tools to the international research community, by building an ambitious, competitive, and collaborative program at the forefront of method development for microbiome science.

Figures

Fig. 1

References

[ 1 ] Dubilier N, McFall-Ngai M, Zhao L. Microbiology: create a global microbiome effort. Nature 2015;526(7575):631–4.10.1038/526631a link1

[ 2 ] Bouchie A. White House unveils National Microbiome Initiative. Nat Biotechnol 2016;34(6):580. 10.1038/nbt0616-580a link1

[ 3 ] Blaser MJ, Cardon ZG, Cho MK, Dangl JL, Donohue TJ, Green JL, et al. Toward a predictive understanding of earth’s microbiomes to address 21st century challenges. MBio 2016;7(3):e00714–16. 10.1128/mBio.00714-16 link1

[ 4 ] Teng L, Wang X, Wang X, Gou H, Ren L, Wang T, et alLabel-free, rapid and quantitative phenotyping of stress response in E. coli via Ramanome. Sci Rep 2016;6:34359. 10.1038/srep34359 link1

[ 5 ] Wang Y, Ji Y, Wharfe ES, Meadows RS, March P, Goodacre R, et al. Raman activated cell ejection for isolation of single cells. Anal Chem 2013;85(22):10697–701. 10.1021/ac403107p link1

[ 6 ] Berry D, Mader E, Lee TK, Woebken D, Wang Y, Zhu D, et al. Tracking heavy water (D2O) incorporation for identifying and sorting active microbial cells. Proc Natl Acad Sci USA 2015;112(2):E194–203. 10.1073/pnas.1420406112 link1

[ 7 ] Wang T, Ji Y, Wang Y, Jia J, Li J, Huang S, et al. Quantitative dynamics of triacylglycerol accumulation in microalgae populations at single-cell resolution revealed by Raman microspectroscopy. Biotechnol Biofuels 2014;7(1):58. 10.1186/1754-6834-7-58 link1

[ 8 ] Ji Y, He Y, Cui Y, Wang T, Wang Y, Li Y, et al. Raman spectroscopy provides a rapid, non-invasive method for quantitation of starch in live, unicellular microalgae. Biotechnol J 2014;9(12):1512–8. 10.1002/biot.201400165 link1

[ 9 ] Wang Y, Song Y, Tao Y, Muhamadali H, Goodacre R, Zhou NY, et al. Reverse and multiple stable isotope probing to study bacterial metabolism and interactions at the single cell level. Anal Chem 2016;88(19):9443–50 link1

[10] Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et al. Enterotypes of the human gut microbiome. Nature 2011;473(7346):174–80. 10.1038/nature09944 link1

[11] Nayfach S, Pollard KS. Toward accurate and quantitative comparative metagenomics. Cell 2016;166(5):1103–16. 10.1016/j.cell.2016.08.007 link1

[12] Liu J, Wang H, Yang H, Zhang Y, Wang J, Zhao F, et al. Composition-based classification of short metagenomic sequences elucidates the landscapes of taxonomic and functional enrichment of microorganisms. Nucleic Acids Res 2013;41(1):e3. 10.1093/nar/gks828 link1

[13] Zhang Y, Ji P, Wang J, Zhao F. RiboFR-Seq: a novel approach to linking 16S rRNA amplicon profiles to metagenomes. Nucleic Acids Res 2016;44(10):e99. 10.1093/nar/gkw165 link1

[14] Peng G, Ji P, Zhao F. A novel codon-based de Bruijn graph algorithm for gene construction from unassembled transcriptomes. Genome Biol 2016;17(1):232. 10.1186/s13059-016-1094-x link1

[15] Ji P, Zhang Y, Wang J, Zhao F. MetaSort untangles metagenome assembly by reducing microbial community complexity. Nat Commun 2017;8:14306. 10.1038/ncomms14306 link1

[16] Zhou Q, Su X, Wang A, Xu J, Ning K. QC-Chain: fast and holistic quality control method for next-generation sequencing data. PLoS One 2013;8(4):e60234. 10.1371/journal.pone.0060234 link1

[17] Su X, Xu J, Ning K. Meta-Storms: efficient search for similar microbial communities based on a novel indexing scheme and similarity score for metagenomic data. Bioinformatics 2012;28(19):2493–501. 10.1093/bioinformatics/bts470 link1

[18] Su X, Wang X, Jing G, Ning K. GPU-Meta-Storms: computing the structure similarities among massive amount of microbial community samples using GPU. Bioinformatics 2014;30(7):1031–3 link1

[19] Su X, Hu J, Huang S, Ning K. Rapid comparison and correlation analysis among massive number of microbial community samples based on MDV data model. Sci Rep 2014;4:6393. 10.1038/srep06393 link1

[20] Song B, Su X, Xu J, Ning K. MetaSee: an interactive and extendable visualization toolbox for metagenomic sample analysis and comparison. PLoS One 2012;7(11):e48998. 10.1371/journal.pone.0048998 link1

[21] Rinke C, Lee J, Nath N, Goudeau D, Thompson B, Poulton N, et al. Obtaining genomes from uncultivated environmental microorganisms using FACS-based single-cell genomics. Nat Protoc 2014;9(5):1038–48. 10.1038/nprot.2014.067 link1

[22] Zhang P, Ren L, Zhang X, Shan Y, Wang Y, Ji Y, et al. Raman-activated cell sorting based on dielectrophoretic single-cell trap and release. Anal Chem 2015;87(4):2282–9. 10.1021/ac503974e link1

[23] Zhang Q, Zhang P, Gou H, Mou C, Huang WE, Yang M, et al. Towards high-throughput microfluidic Raman-activated cell sorting. Analyst 2015;140(18):6163–74. Erratum in: Analyst 2015;140(19):6758.10.1039/C5AN01074H link1

[24] Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng JF, et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature 2013;499(7459):431–7. 10.1038/nature12352 link1

[25] Mason OU, Hazen TC, Borglin S, Chain PSG, Dubinsky EA, Fortney JL, et al. Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to Deepwater Horizon oil spill. ISME J 2012;6(9):1715–27.10.1038/ismej.2012.59 link1

[26] Lasken RS, McLean JS. Recent advances in genomic DNA sequencing of microbial species from single cells. Nat Rev Genet 2014;15(9):577–84. 10.1038/nrg3785 link1

[27] Roux S, Hallam SJ, Woyke T, Sullivan MB. Viral dark matter and virus–host interactions resolved from publicly available microbial genomes. eLife 2015;4:e08490 link1

[28] Tang HW, Yang XB, Kirkham J, Smith DA. Probing intrinsic and extrinsic components in single osteosarcoma cells by near-infrared surface-enhanced Raman scattering. Anal Chem 2007;79(10):3646–53. 10.1021/ac062362g link1

[29] Li M, Canniffe DP, Jackson PJ, Davison PA, FitzGerald S, Dickman MJ, et al. Rapid resonance Raman microspectroscopy to probe carbon dioxide fixation by single cells in microbial communities. ISME J 2012;6(4):875–85. 10.1038/ismej.2011.150 link1

[30] McEwen GD, Wu Y, Tang M, Qi X, Xiao Z, Baker SM, et al. Subcellular spectroscopic markers, topography and nanomechanics of human lung cancer and breast cancer cells examined by combined confocal Raman microspectroscopy and atomic force microscopy. Analyst 2013;138(3):787–97.10.1039/C2AN36359C link1

[31] Beljebbar A, Dukic S, Amharref N, Manfait M. Ex vivo and in vivo diagnosis of C6 glioblastoma development by Raman spectroscopy coupled to a microprobe. Anal Bioanal Chem 2010;398(1):477–87. 10.1007/s00216-010-3910-6 link1

[32] de Bourcy CF, De Vlaminck I, Kanbar JN, Wang J, Gawad C, Quake SR. A quantitative comparison of single-cell whole genome amplification methods. PLoS One 2014;9(8):e105585. 10.1371/journal.pone.0105585 link1

[33] Zhang Q, Wang T, Zhou Q, Zhang P, Gong Y, Gou H, et al. Development of a facile droplet-based single-cell isolation platform for cultivation and genomic analysis in microorganisms. Sci Rep 2017;7:41192. 10.1038/srep41192 link1

[34] Xu P, Zheng X, Tao Y, Du W. Cross-interface emulsification for generating size-tunable droplets. Anal Chem 2016;88(6):3171–7. link1

[35] Browne HP, Forster SC, Anonye BO, Kumar N, Neville BA, Stares MD, et al. Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation. Nature 2016;533(7604):543–6. 10.1038/nature17645 link1

[36] Lau JT, Whelan FJ, Herath I, Lee CH, Collins SM, Bercik P, et al. Capturing the diversity of the human gut microbiota through culture-enriched molecular profiling. Genome Med 2016;8(1):72.10.1186/s13073-016-0327-7 link1

[37] Boedicker JQ, Li L, Kline TR, Ismagilov RF. Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics. Lab Chip 2008;8(8):1265–72. 10.1039/b804911d link1

[38] Eun YJ, Utada AS, Copeland MF, Takeuchi S, Weibel DB. Encapsulating bacteria in agarose microparticles using microfluidics for high-throughput cell analysis and isolation. ACS Chem Biol 2011;6(3):260–6. 10.1021/cb100336p link1

[39] Jiang CY, Dong L, Zhao JK, Hu X, Shen C, Qiao Y, et al. High-throughput single-cell cultivation on microfluidic streak plates. Appl Environ Microbiol 2016;82(7):2210–8. 10.1128/AEM.03588-15 link1

[40] Glass EM, Wilkening J, Wilke A, Antonopoulos S, Meyer F. Using the metagenomics RAST server (MG-RAST) for analyzing shotgun metagenomes. Cold Spring Harb Protoc 2010;2010(1):pdb.prot5368.

[41] Seshadri R, Kravitz SA, Smarr L, Gilna P, Frazier M. CAMERA: a community resource for metagenomics. PLoS Biol 2007;5(3):e75. 10.1371/journal.pbio.0050075 link1

[42] Shah N, Tang H, Doak TG, Ye Y. Comparing bacterial communities inferred from 16S rRNA gene sequencing and shotgun metagenomics. Pac Symp Biocomput 2011;16:165–76.

[43] Mitra S, St?rk M, Huson DH. Analysis of 16S rRNA environmental sequences using MEGAN. BMC Genomics 2011;12(Suppl 3):S17. 10.1186/1471-2164-12-S3-S17 link1

[44] Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 2009;75(23):7537–41. 10.1128/AEM.01541-09 link1

[45] Lozupone C, Knight R.UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 2005;71(12):8228–35. 10.1128/AEM.71.12.8228-8235.2005 link1

[46] Hamady M, Lozupone C, Knight R. Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J 2010;4(1):17–27. 10.1038/ismej.2009.97 link1

[47] Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 2010;7(5):335–6. 10.1038/nmeth.f.303 link1

[48] Su X, Xu J, Ning K. Parallel-META: efficient metagenomic data analysis based on high-performance computation. BMC Syst Biol 2012;6(Suppl 1):S16. 10.1186/1752-0509-6-S1-S16 link1

[49] Su X, Pan W, Song B, Xu J, Ning K. Parallel-META 2.0: enhanced metagenomic data analysis with functional annotation, high performance computing and advanced visualization. PLoS One 2014;9(3):e89323. 10.1371/journal.pone.0089323 link1

[50] Jing G, Sun Z, Wang H, Gong Y, Huang S, Ning K, et al. Parallel-META 3: comprehensive taxonomical and functional analysis platform for efficient comparison of microbial communities. Sci Rep 2017;7:40371. 10.1038/srep40371 link1

[51] Huang S, Li R, Zeng X, He T, Zhao H, Chang A, et al. Predictive modeling of gingivitis severity and susceptibility via oral microbiota. ISME J 2014;8(9):1768–80. 10.1038/ismej.2014.32 link1

[52] Teng F, Yang F, Huang S, Bo C, Xu ZZ, Amir A, et al. Prediction of early childhood caries via spatial-temporal variations of oral microbiota. Cell Host Microbe 2015;18(3):296–306. 10.1016/j.chom.2015.08.005 link1

[53] Guo Z, Zhang J, Wang Z, Ang KY, Huang S, Hou Q, et al. Intestinal microbiota distinguish gout patients from healthy humans. Sci Rep 2016;6:20602. 10.1038/srep20602 link1

[54] Baker JL, Bor B, Agnello M, Shi W, He X. Ecology of the oral microbiome: beyond bacteria. Trend Microbiol .Epub 2017 Jan 11.

Related Research