Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2017, Volume 3, Issue 3 doi: 10.1016/J.ENG.2017.03.012

Advances in Cadaverine Bacterial Production and Its Applications

a State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
b College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
c College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui 741001, China

Received: 2016-12-03 Revised: 2017-04-15 Accepted: 2017-04-18 Available online: 2017-05-23

Next Previous

Abstract

Cadaverine, a natural polyamine with multiple bioactivities that is widely distributed in prokaryotes and eukaryotes, is becoming an important industrial chemical. Cadaverine exhibits broad prospects for various applications, especially as an important monomer for bio-based polyamides. Cadaverine-based polyamide PA 5X has broad application prospects owing to its environmentally friendly characteristics and exceptional performance in water absorption and dimensional stability. In this review, we summarize recent findings on the biosynthesis, metabolism, and physiological function of cadaverine in bacteria, with a focus on the regulatory mechanism of cadaverine synthesis in Escherichia coli (E. coli). We also describe recent developments in bacterial production of cadaverine by direct fermentation and whole-cell bioconversion, and recent approaches for the separation and purification of cadaverine. In addition, we present an overview of the application of cadaverine in the synthesis of completely bio-based polyamides. Finally, we provide an outlook and suggest future developments to advance the production of cadaverine from renewable resources.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

References

[ 1 ] Moreau PL. The lysine decarboxylase CadA protects Escherichia coli starved of phosphate against fermentation acids. J Bacteriol 2007;189(6):2249–61 link1

[ 2 ] Samartzidou H, Mehrazin M, Xu Z, Benedik MJ, Delcour AH. Cadaverine inhibition of porin plays a role in cell survival at acidic pH. J Bacteriol 2003;185(1):13–9 link1

[ 3 ] Jancewicz AL, Gibbs NM, Masson PH. Cadaverine’s functional role in plant development and environmental response. Front Plant Sci 2016;7:870 link1

[ 4 ] Andersson AC, Henningsson S, Rosengren E. Formation of cadaverine in the pregnant rat. Acta Physiol Scand 1979;105(4):508–12 link1

[ 5 ] Wang Q, Wang Y, Liu R, Yan X, Li Y, Fu H, et al . Comparison of the effects of Mylabris and Acanthopanax senticosus on promising cancer marker polyamines in plasma of a Hepatoma-22 mouse model using HPLC-ESI-MS. Biomed Chromatogr 2013;27(2):208–15 link1

[ 6 ] Miller-Fleming L, Olin-Sandoval V, Campbell K, Ralser M. Remaining mysteries of molecular biology: The role of polyamines in the cell. J Mol Biol 2015;427(21):3389–406 link1

[ 7 ] Becker J, Wittmann C. Bio-based production of chemicals, materials and fuels—Corynebacterium glutamicum as versatile cell factory. Curr Opin Biotechnol 2012;23(4):631–40 link1

[ 8 ] Schneider J, Wendisch VF. Biotechnological production of polyamines by bacteria: Recent achievements and future perspectives. Appl Microbiol Biotechnol 2011;91(1):17–30 link1

[ 9 ] Kind S, Wittmann C. Bio-based production of the platform chemical 1,5-diaminopentane. Appl Microbiol Biotechnol 2011;91(5):1287–96 link1

[10] Qian ZG, Xia XX, Lee SY. Metabolic engineering of Escherichia coli for the production of cadaverine: A five carbon diamine. Biotechnol Bioeng 2011;108(1):93–103 link1

[11] Ma W, Cao W, Zhang H, Chen K, Li Y, Ouyang P. Enhanced cadaverine production from L-lysine using recombinant Escherichia coli co-overexpressing CadA and CadB. Biotechnol Lett 2015;37(4):799–806 link1

[12] Oh YH, Kang KH, Kwon MJ, Choi JW, Joo JC, Lee SH, et al.Development of engineered Escherichia coli whole-cell biocatalysts for high-level conversion of L-lysine into cadaverine. J Ind Microbiol Biotechnol 2015;42(11):1481–91 link1

[13] Velasco AM, Leguina JI, Lazcano A. Molecular evolution of the lysine biosynthetic pathways. J Mol Evol 2002;55(4):445–59 link1

[14] Bakhiet N, Forney FW, Stahly DP, Daniels L. Lysine biosynthesis in Methanobacterium thermoautotrophicum is by the diaminopimelic acid pathway. Curr Microbio 1984;10(4):195–8 link1

[15] Weinberger S, Gilvarg C. Bacterial distribution of the use of succinyl and acetyl blocking groups in diaminopimelic acid biosynthesis. J Bacteriol 1970;101(1):323–4.

[16] Misono H, Togawa H, Yamamoto T, Soda K. Meso-α,ε-diaminopimelate D-dehydrogenase: Distribution and the reaction product. J Bacteriol 1979;137(1):22–7.

[17] White PJ. The essential role of diaminopimelate dehydrogenase in the biosynthesis of lysine by Bacillus sphaericus. Microbiology 1983;129:739–49 link1

[18] Scapin G, Blanchard JS. Enzymology of bacterial lysine biosynthesis. In: Purich DL, editor Advances in enzymology and related areas of molecular biology. New Jersey: John Wiley & Sons, Inc.; 2006. p. 279–324 link1

[19] LéJohn HB. Enzyme regulation, lysine pathways and cell wall structures as indicators of major lines of evolution in fungi. Nature 1971;231(5299):164–8 link1

[20] Azevedo RA, Lea PJ. Lysine metabolism in higher plants. Amino Acid 2001;20(3):261–79 link1

[21] Bult CJ, White O, Olsen GJ, Zhou L, Fleischmann RD, Sutton GG, et al.Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 1996;273(5278):1058–73 link1

[22] Sundharadas G, Gilvarg C. Biosynthesis of α,ε-diaminopimelic acid in Bacillus megaterium. J Biol Chem 1967;242(17):3983–4.

[23] Kikuchi Y, Kojima H, Tanaka T, Takatsuka Y, Kamio Y. Characterization of a second lysine decarboxylase isolated from Escherichia coli. J Bacteriol 1997;179(14):4486–92 link1

[24] Sabo DL, Fischer EH. Chemical properties of Escherichia coli lysine decarboxylase including a segment of its pyridoxal 5′-phosphate binding site. Biochemistry 1974;13(4):670–6 link1

[25] Lemonnier M, Lane D. Expression of the second lysine decarboxylase gene of Escherichia coli. Microbiology 1998;144(Pt 3):751–60 link1

[26] Yamamoto Y, Miwa Y, Miyoshi K, Furuyama J, Ohmori H. The Escherichia colildcC gene encodes another lysine decarboxylase, probably a constitutive enzyme. Genes Genet Syst 1997;72(3):167–72 link1

[27] Kanjee U, Houry WA. Mechanisms of acid resistance in Escherichia coli. Annu Rev Microbiol 2013;67:65–81 link1

[28] Neely MN, Olson ER. Kinetics of expression of the Escherichia colicad operon as a function of pH and lysine. J Bacteriol 1996;178(18):5522–8 link1

[29] Meng SY, Bennett GN. Nucleotide sequence of the Escherichia colicad operon: A system for neutralization of low extracellular pH. J Bacteriol 1992;174(8):2659–69 link1

[30] Rauschmeier M, Schüppel V, Tetsch L, Jung K. New insights into the interplay between the lysine transporter LysP and the pH sensor CadC in Escherichia coli. J Mol Biol 2014;426(1):215–29 link1

[31] Kuper C, Jung K. CadC-mediated activation of the cadBA promoter in Escherichia coli. J Mol Microbiol Biotechnol 2005;10(1):26–39 link1

[32] Haneburger I, Eichinger A, Skerra A, Jung K. New insights into the signaling mechanism of the pH-responsive, membrane-integrated transcriptional activator CadC of Escherichia coli. J Biol Chem 2011;286(12):10681–9 link1

[33] Popkin PS, Maas WK. Escherichia coli regulatory mutation affecting lysine transport and lysine decarboxylase. J Bacteriol 1980;141(2):485–92.

[34] Steffes C, Ellis J, Wu J, Rosen BP. The lysP gene encodes the lysine-specific permease. J Bacteriol 1992;174(10):3242–9 link1

[35] Shi X, Waasdorp BC, Bennett GN. Modulation of acid-induced amino acid decarboxylase gene expression by hns in Escherichia coli. J Bacteriol 1993;175(4):1182–6 link1

[36] Krin E, Danchin A, Soutourina O. Decrypting the H-NS-dependent regulatory cascade of acid stress resistance in Escherichia coli. BMC Microbiol 2010;10:273 link1

[37] Fritz G, Koller C, Burdack K, Tetsch L, Haneburger I, Jung K, et al.. Induction kinetics of a conditional pH stress response system in Escherichia coli. J Mol Biol 2009;393(2):272–86 link1

[38] Neely MN, Dell CL, Olson ER. Roles of LysP and CadC in mediating the lysine requirement for acid induction of the Escherichia coli cad operon. J Mol Biol 1994;176(11):3278–85 link1

[39] Haneburger I, Fritz G, Jurkschat N, Tetsch L, Eichinger A, Skerra A, et al . Deactivation of the E. coli pH stress sensor CadC by cadaverine. J Mol Biol 2012;424(1–2):15–27 link1

[40] Kanjee U, Gutsche I, Alexopoulos E, Zhao B, El Bakkouri M, Thibault G, et al.Linkage between the bacterial acid stress and stringent responses: The structure of the inducible lysine decarboxylase. EMBO J 2011;30(5):931–44 link1

[41] Romano A, Trip H, Lolkema JS, Lucas PM. Three-component lysine/ornithine decarboxylation system in Lactobacillus saerimneri 30a. J Bacteriol 2013;195(6):1249–54 link1

[42] Kind S, Jeong WK, Schröder H, Zelder O, Wittmann C. Identification and elimination of the competing N-acetyldiaminopentane pathway for improved production of diaminopentane by Corynebacterium glutamicum. Appl Environ Microbiol 2010;76(15):5175–80 link1

[43] Cacciapuoti G, Porcelli M, Moretti MA, Sorrentino F, Concilio L, Zappia V, et al.The first agmatine/cadaverine aminopropyl transferase: Biochemical and structural characterization of an enzyme involved in polyamine biosynthesis in the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 2007;189(16):6057–67 link1

[44] Revelles O, Espinosa-Urgel M, Fuhrer T, Sauer U, Ramos JL. Multiple and interconnected pathways for L-lysine catabolism in Pseudomonas putida KT2440. J Bacteriol 2005;187(21):7500–10 link1

[45] Kojima S, Kamio Y. Molecular basis for the maintenance of envelope integrity in Selenomonas ruminantium: Cadaverine biosynthesis and covalent modification into the peptidoglycan play a major role. J Nutr Sci Vitaminol (Tokyo) 2012;58(3):153–60 link1

[46] Kamio Y, Itoh Y, Terawaki Y, Kusano T. Cadaverine is covalently linked to peptidoglycan in Selenomonas ruminantium. J Bacteriol 1981;145(1):122–8.

[47] Kamio Y, Itoh Y, Terawaki Y. Chemical structure of peptidoglycan in Selenomonas ruminantium: Cadaverine links covalently to the D-glutamic acid residue of peptidoglycan. J Bacteriol 1981;146(1):49–53.

[48] Kamio Y. Structural specificity of diamines covalently linked to peptidoglycan for cell growth of Veillonella alcalescens and Selenomonas ruminantium. J Bacteriol 1987;169(10):4837–40 link1

[49] Kamio Y, Nakamura K. Putrescine and cadaverine are constituents of peptidoglycan in Veillonella alcalescens and Veillonella parvula. J Bacteriol. 1987;169(6):2881–4 link1

[50] Hirao T, Sato M, Shirahata A, Kamio Y. Covalent linkage of polyamines to peptidoglycan in Anaerovibrio lipolytica. J Bacteriol 2000;182(4):1154–7 link1

[51] Burrell M, Hanfrey CC, Kinch LN, Elliott KA, Michael AJ. Evolution of a novel lysine decarboxylase in siderophore biosynthesis. Mol Microbiol 2012;86(2):485–99 link1

[52] Soe CZ, Telfer TJ, Levina A, Lay PA, Codd R. Simultaneous biosynthesis of putrebactin, avaroferrin and bisucaberin by Shewanella putrefaciens and characterisation of complexes with iron(III), molybdenum(VI) or chromium(V). J Inorg Biochem 2016;162:207–15 link1

[53] Schafft M, Diekmann H. [Cadaverine is an intermediate in the biosynthesis of arthrobactin and ferrioxamine E]. Arch Microbiol 1978;117(2):203–7. German link1

[54] Fujita MJ, Nakano K, Sakai R. Bisucaberin B, a linear hydroxamate class siderophore from the marine bacterium Tenacibaculum mesophilum. Molecules 2013;18(4):3917–26 link1

[55] Kadi N, Song L, Challis GL. Bisucaberin biosynthesis: An adenylating domain of the BibC multi-enzyme catalyzes cyclodimerization of N-hydroxy-N-succinylcadaverine. Chem Commun (Camb) 2008;(41):5119–21 link1

[56] Barona-Gómez F, Lautru S, Francou FX, Leblond P, Pernodet JL, Challis GL. Multiple biosynthetic and uptake systems mediate siderophore-dependent iron acquisition in Streptomyces coelicolor A3(2) and Streptomyces ambofaciens ATCC 23877. Microbiology 2006;152(Pt 11):3355–66 link1

[57] Sidebottom AM, Karty JA, Carlson EE. Accurate mass MS/MS/MS analysis of siderophores ferrioxamine B and E1 by collision-induced dissociation electrospray mass spectrometry. J Am Soc Mass Spectrom 2015;26(11):1899–902 link1

[58] Dhungana S, White PS, Crumbliss AL. Crystal structure of ferrioxamine B: A comparative analysis and implications for molecular recognition. J Biol Inorg Chem 2001;6(8):810–8 link1

[59] Meiwes J, Fiedler HP, Zähner H, Konetschny-Rapp S, Jung G. Production of desferrioxamine E and new analogues by directed fermentation and feeding fermentation. Appl Microbiol Biotechnol 1990;32(5): 505–10 link1

[60] Imbert M, Béchet M, Blondeau R. Comparison of the main siderophores produced by some species of Streptomyces. Curr Microbiol 1995;31(2):129–33 link1

[61] Kind S, Kreye S, Wittmann C. Metabolic engineering of cellular transport for overproduction of the platform chemical 1,5-diaminopentane in Corynebacterium glutamicum. Metab Eng 2011;13(5):617–27 link1

[62] Park SH, Soetyono F, Kim HK. Cadaverine production by using cross-linked enzyme aggregate of Escherichia coli lysine decarboxylase. J Microbiol Biotechnol 2017;27(2):289–96 link1

[63] Kinoshita S, Udaka S, Shimono M. Studies on the amino acid fermentation. Part I. Production of L-glutamic acid by various microorganisms. J Gen Appl Microbiol 2004;50(6):331–43.

[64] de Graaf AA, Eggeling L, Sahm H. Metabolic engineering for L-lysine production by Corynebacterium glutamicum. Adv Biochem Eng Biotechnol 2001;73:9–29 link1

[65] Becker J, Klopprogge C, Herold A, Zelder O, Bolten CJ, Wittmann C. Metabolic flux engineering of L-lysine production in Corynebacterium glutamicum—Over expression and modification of G6P dehydrogenase. J Biotechnol 2007;132(2):99–109 link1

[66] Blombach B, Schreiner ME, Moch M, Oldiges M, Eikmanns BJ. Effect of pyruvate dehydrogenase complex deficiency on L-lysine production with Corynebacterium glutamicum. Appl Microbiol Biotechnol 2007;76(3):615–23 link1

[67] Eggeling L, Oberle S, Sahm H. Improved L-lysine yield with Corynebacterium glutamicum: Use of dapA resulting in increased flux combined with growth limitation. Appl Microbiol Biotechnol 1998;49(1):24–30 link1

[68] Mitsuhashi S, Hayashi M, Ohnishi J, Ikeda M. Disruption of malate: Quinone oxidoreductase increases L-lysine production by Corynebacterium glutamicum. Biosci Biotechnol Biochem 2006;70(11):2803–6 link1

[69] Takeno S, Murata R, Kobayashi R, Mitsuhashi S, Ikeda M. Engineering of Corynebacterium glutamicum with an NADPH-generating glycolytic pathway for L-lysine production. Appl Environ Microbiol 2010;76(21):7154–60 link1

[70] Becker J, Zelder O, Häfner S, Schröder H, Wittmann C. From zero to hero—Design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production. Metab Eng 2011;13(2):159–68 link1

[71] Pérez-García F, Peters-Wendisch P, Wendisch VF. Engineering Corynebacterium glutamicum for fast production of L-lysine and L-pipecolic acid. Appl Microbiol Biotechnol 2016;100(18):8075–90 link1

[72] Mimitsuka T, Sawai H, Hatsu M, Yamada K. Metabolic engineering of Corynebacterium glutamicum for cadaverine fermentation. Biosci Biotechnol Biochem 2007;71(9):2130–5 link1

[73] Li M, Li D, Huang Y, Liu M, Wang H, Tang Q, et al . Improving the secretion of cadaverine in Corynebacterium glutamicum by cadaverine-lysine antiporter. J Ind Microbiol Biotechnol 2014;41(4):701–9 link1

[74] Matsushima Y, Hirasawa T, Shimizu H. Enhancement of 1,5-diaminopentane production in a recombinant strain of Corynebacterium glutamicum by Tween 40 addition. J Gen Appl Microbiol 2016;62(1):42–5 link1

[75] Kind S, Neubauer S, Becker J, Yamamoto M, Völkert M, Abendroth Gv, et al . From zero to hero—Production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum. Metab Eng 2014;25:113–23 link1

[76] Buschke N, Becker J, Schäfer R, Kiefer P, Biedendieck R, Wittmann C. Systems metabolic engineering of xylose-utilizing Corynebacterium glutamicum for production of 1,5-diaminopentane. Biotechnol J 2013;8(5):557–70 link1

[77] Kikuchi Y, Kojima H, Tanaka T. Mutational analysis of the feedback sites of lysine-sensitive aspartokinase of Escherichia coli. FEMS Microbiol Lett 1999;173(1):211–5 link1

[78] Van Dien SJ, Iwatani S, Usuda Y, Matsui K.Theoretical analysis of amino acid-producing Escherichia coli using a stoichiometric model and multivariate linear regression. J Biosci Bioeng 2006;102(1):34–40 link1

[79] Cheraghi S, Akbarzade A, Farhangi A, Chiani M, Saffari Z, Ghassemi S, et al . Improved production of L-lysine by over-expression of meso-diaminopimelate decarboxylase enzyme of Corynebacterium glutamicum in Escherichia coli. Pak J Biol Sci 2010;13(10):504–8 link1

[80] Ying H, He X, Li Y, Chen K, Ouyang P. Optimization of culture conditions for enhanced lysine production using engineered Escherichia coli. Appl Biochem Biotechnol 2014;172(8):3835–43 link1

[81] Wang Y, Li Q, Zheng P, Guo Y, Wang L, Zhang T, et al . Evolving the L-lysine high-producing strain of Escherichia coli using a newly developed high-throughput screening method. J Ind Microbiol Biotechnol 2016;43(9):1227–35 link1

[82] delaVega AL, Delcour AH. Cadaverine induces closing of E. coli porins. EMBO J 1995;14(23):6058–65.

[83] Hamner S, McInnerney K, Williamson K, Franklin MJ, Ford TE. Bile salts affect expression of Escherichia coli O157:H7 genes for virulence and iron acquisition, and promote growth under iron limiting conditions. PLoS One 2013;8(9):e74647 link1

[84] Iyer R, Delco;ur AH. Complex inhibition of OmpF and OmpC bacterial porins by polyamines. J Biol Chem 1997;272(30):18595–601 link1

[85] Tateno T, Okada Y, Tsuchidate T, Tanaka T, Fukuda H, Kondo A. Direct production of cadaverine from soluble starch using Corynebacterium glutamicum coexpressing α-amylase and lysine decarboxylase. Appl Microbiol Biotechnol 2009;82(1):115–21 link1

[86] Naerdal I, Pfeifenschneider J, Brautaset T, Wendisch VF. Methanol-based cadaverine production by genetically engineered Bacillus methanolicus strains. Microb Biotechnol 2015;8(2):342–50 link1

[87] Nishi K, Endo S, Mori Y, Totsuka K, Hirao Y, inventors; Ajinomoto KK, assignee. Method for producing cadaverine dicarboxylate and its use for the production of nylon. European Patent EP1482055. 2006 Jan 3.

[88] de Carvalho CC. Enzymatic and whole cell catalysis: Finding new strategies for old processes. Biotechnol Adv 2011;29(1):75–83 link1

[89] Chen RR. Permeability issues in whole-cell bioprocesses and cellular membrane engineering. Appl Microbiol Biotechnol 2007;74(4):730–8 link1

[90] León R, Fernandes P, Pinheiro HM, Cabral JMS. Whole-cell biocatalysis in organic media. Enzyme Microb Tech 1998;23(7–8):483–500 link1

[91] Soksawatmaekhin W, Uemura T, Fukiwake N, Kashiwagi K, Igarashi K. Identification of the cadaverine recognition site on the cadaverine-lysine antiporter CadB. J Biol Chem 2006;281(39):29213–20 link1

[92] Kim HJ, Kim YH, Shin JH, Bhatia SK, Sathiyanarayanan G, Seo HM, et al..Optimization of direct lysine decarboxylase biotransformation for cadaverine production with whole-cell biocatalysts at high lysine concentration. J Microbiol Biotechnol 2015;25(7):1108–13 link1

[93] Ma W, Cao W, Zhang B, Chen K, Liu Q, Li Y, et al . Engineering a pyridoxal 5′-phosphate supply for cadaverine production by using Escherichia coli whole-cell biocatalysis. Sci Rep 2015;5:15630 link1

[94] Bhatia SK, Kim YH, Kim HJ, Seo HM, Kim JH, Song HS, et al. Biotransformation of lysine into cadaverine using barium alginate-immobilized Escherichia coli overexpressing CadA. Bioprocess Biosyst Eng 2015;38(12):2315–22 link1

[95] Li N, Chou H, Yu L, Xu Y. Cadaverine production by heterologous expression of Klebsiella oxytoca lysine decarboxylase. Biotechnol Bioproc Engi 2014;19(6):965–72 link1

[96] Wang C, Zhang K, Chen Z, Cai H, Wan H, Ouyang P. Directed evolution and mutagenesis of lysine decarboxylase from Hafnia alvei AS1.1009 to improve its activity toward efficient cadaverine production. Biotechnol Bioproc Eng 2015;20(3):439–46 link1

[97] Krzyżaniak A, Schuur B, de Haan AB. Extractive recovery of aqueous diamines for bio-based plastics production. J Chem Tech Biot 2013;88(10):1937–45 link1

[98] Kind S, Wittmann C, inventors; BASF (China) Company Limited, BASF SE, assignee. Processes and recombinant microorganisms for the production of cadaverine. PCT Patent WO2012114256 A1. 2012 Aug 30.

[99] Liu X, Liu C, Dai D, Qin B, Li N, inventors; Cathay R&D Center Co., Ltd., Cathay Industrial Biotech Ltd., assignee. Purification of cadaverine using high boiling point solvent. PCT Patent WO2014/114000 A1. 2014 Jul 31.

[100] Aeschelmann F, Carus M. Bio-based building blocks and polymers in the world—Capacities, production and applications: Status quo and trends toward 2020. 3rd ed. Hürth: NOVA-Institut GmbH; 2015.

[101] Martino L, Basilissi L, Farina H, Ortenzi MA, Zini E, Di Silvestro G, et al.. Bio-based polyamide 11: Synthesis, rheology and solid-state properties of star structures. Eur Polym J 2014;59:69–77 link1

[102] Wang Z, Hu G, Zhang J, Xu J, Shi W. Non-isothermal crystallization kinetics of Nylon 10T and Nylon 10T/1010 copolymers: Effect of sebacic acid as a third comonomer. Chin J Chem Eng 2016. In press link1

[103] McKeen LW .Polyamides (Nylons). In: McKeen LW The effect of temperature and other factors on plastics and elastomers . 3rd ed. Oxford: William Andrew Publishing; 2014. p. 233–340 link1

[104] Wu Z, Zhou C, Qi R, Zhang H. Synthesis and characterization of nylon 1012/clay nanocomposite. J Appl Polym Sci 2002;83(11):2403–10 link1

[105] Rulkens R, Koning C. Chemistry and technology of polyamides. In: Matyjaszewski K, Möller M, editors Polymer science: A comprehensive reference. Amsterdam: Elsevier; 2012. p. 431–67 link1

[106] Karak N. Polyamides, polyolefins and other vegetable oil-based polymers. In: Karak N, editor Vegetable oil-based polymers : Properties, processing and applications. Cambridge: Woodhead Publishing Limited; 2012. p. 208–25 link1

[107] Moorthy JN, Singhal N. Facile and highly selective conversion of nitriles to amides via indirect acid-catalyzed hydration using TFA or AcOH-H2SO4. J Org Chem 2005;70(5):1926–9 link1

[108] ]Azcan N, Demirel E. Obtaining 2-octanol, 2-octanone, and sebacic acid from castor oil by microwave-induced alkali fusion. Ind Eng Chem Res 2008;47(6):1774–8 link1

[109] Draths KM, Frost JW. Environmentally compatible synthesis of adipic acid from D-glucose. J Am Chem Soc 1994;116(1):399–400 link1

[110] van Duuren JB, Brehmer B, Mars AE, Eggink G, Dos Santos VA, Sanders JP. A limited LCA of bio-adipic acid: Manufacturing the nylon-6,6 precursor adipic acid using the benzoic acid degradation pathway from different feedstocks. Biotechnol Bioeng 2011;108(6):1298–306 link1

[111] Lange JP, Vestering JZ, Haan RJ. Towards ‘bio-based’ nylon: Conversion of γ-valerolactone to methyl pentenoate under catalytic distillation conditions. Chem Commun (Camb) 2007;(33):3488–90 link1

[112] Boussie TR, Dias EL, Fresco ZM, Murphy VJ, Shoemaker J, Archer R, et al., inventors; Rennovia, Inc., assignee. Production of adipic acid and derivatives from carbohydrate-containing materials. US Patent US8669397 B2. 2014 Mar 11.

[113] Schneider J, Eberhardt D, Wendisch VF. Improving putrescine production by Corynebacterium glutamicum by fine-tuning ornithine transcarbamoylase activity using a plasmid addiction system. Appl Microbiol Biotechnol 2012;95(1):169–78 link1

[114] Qian ZG, Xia XX, Lee SY. Metabolic engineering of Escherichia coli for the production of putrescine: A four carbon diamine. Biotechnol Bioeng 2009;104(4):651–62.

[115] Frost JW, inventor; Board of Trustees of Michigan State University, assignee. Synthesis of caprolactam from lysine. US Patent US8367819 B2. 2013 Feb 5.

[116] ]Chan-Thaw CE, Marelli M, Psaro R, Ravasio N, Zaccheria F. New generation biofuels: γ-valerolactone into valeric esters in one pot. RSC Adv 2013;3:1302–6 link1

[117] ]Beerthuis R, Rothenberg G, Shiju NR. Catalytic routes towards acrylic acid, adipic acid and ε-caprolactam starting from biorenewables. Green Chem 2015;17:1341–61 link1

[118] Eltahir YA, Saeed HAM, Chen Y, Xia Y, Wang Y. Effect of hot drawing on the structure and properties of novel polyamide 5,6 fibers. Text Res J 2014;84(16):1700–7 link1

[119] Kato K, Masunaga A, Matsuoka H, inventors; Toray Industries Inc., assignee. Polyamide resin, polyamide resin composition, and molded article comprising same. US Patent US 20120016077 A1. 2012 Jan 19.

Related Research