Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2017, Volume 3, Issue 4 doi: 10.1016/J.ENG.2017.03.029

Insights into the Organotemplate-Free Synthesis of Zeolite Catalysts

Key Lab of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310007, China

Accepted: 2017-07-21 Available online: 2017-08-30

Next Previous

Abstract

As the most important nanoporous material, zeolites, which have intricate micropores, are essential heterogeneous catalysts in industrial processes. Zeolites are generally synthesized with organic templates under hydrothermal conditions; however, this method is environmentally unfriendly and costly due to the formation of harmful gases and polluted water. This article briefly summarizes the role of organic templates and describes designed routes for the organotemplate-free synthesis of zeolites, aided by zeolite seeds and zeolite seeds solution. Furthermore, this review explicates that the micropore volume decreases with an increase of the Si/Al ratios in the organotemplate-free synthesis of zeolite products, where Na+ exists as an alkali cation. This feature is very important in directing the synthesis of zeolite catalysts with controllable Si/Al ratios under organotemplate-free conditions, and is thus important for the efficient design of zeolites.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

References

[ 1 ] Iwamoto M, Yahiro H, Tanda K, Mizuno N, Mine Y, Kagawa S. Removal of nitrogen monoxide through a novel catalytic process. 1. Decomposition on excessively copper-ion-exchanged ZSM-5 zeolites. J Phys Chem 1991;95(9):3727–30 link1

[ 2 ] Corma A. Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions. Chem Rev 1995;95(3):559–614 link1

[ 3 ] Shelef M. Selective catalytic reduction of NOx with N-free reductants. Chem Rev 1995;95(1):209–25 link1

[ 4 ] Parvulescu VI, Grange P, Delmon B. Catalytic removal of NO. Catal Today 1998;46(4):233–316 link1

[ 5 ] Corma A, Forness V, Pergher SB, Maesen TLM, Buglass JG. Delaminated zeolite precursors as selective acidic catalysts. Nature 1998;396(6709):353–6 link1

[ 6 ] Davis ME. Ordered porous materials for emerging applications. Nature 2002;417(6891):813–21 link1

[ 7 ] ?ejka J, Wichterlová B. Acid-catalyzed synthesis of mono- and dialkyl benzenes over zeolites: Active sites, zeolite topology, and reaction mechanisms. Catal Rev 2002;44(3):375–421 link1

[ 8 ] Corma A. State of the art and future challenges of zeolites as catalysts. J Catal 2003;216(1–2):298–312 link1

[ 9 ] Cundy CS, Cox PA. The hydrothermal synthesis of zeolites: History and development from the earliest days to the present time. Chem Rev 2003;103(3):663–702 link1

[10] Zones SI. Translating new materials discoveries in zeolite research to commercial manufacture. Microporous Mesoporous Mater 2011;144(1–3):1–8 link1

[11] Shi J, Wang Y, Yang W, Tang Y, Xie Z. Recent advances of pore system construction in zeolite-catalyzed chemical industry processes. Chem Soc Rev 2015;44(24):8877–903 link1

[12] Corma A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem Rev 1997;97(6):2373–420 link1

[13] Amorim R, Vilaca N, Martinho O, Reis RM, Sardo M, Rocha J, et al.Zeolite structures loading with an anticancer compound as drug delivery systems. J Phys Chem C 2012;116(48):25642–50 link1

[14] Rimoli MG, Rabaioli MR, Melisi D, Curio A, Mondello S, Mirabelli R, et al.Synthetic zeolites as a new tool for drug delivery. J Bone Miner Res 2008;87A(1):156–64 link1

[15] Dahm A, Eroksson H. Ultra-stable zeolites—A tool for in-cell chemistry. J Biotechnol 2004;111(3):279–90 link1

[16] Barrer RM. Synthesis of a zeolitic mineral with chabazite-like sorptive properties. J Chem Soc 1948;127–32 link1

[17] Kerr GT. Chemistry of crystalline aluminosilicates. II. The synthesis and properties of zeolite ZK-4. Inorg Chem 1966;5(9):1537–9 link1

[18] Schwochow F, Heinze G. Production of synthetic zeolites of faujasite structure. United States patent US 3720756. 1973 Mar 13.

[19] Puppe L, Schwochow F. Pure synthetic zeolite with faujasite structure—Made by pptn. and crystallisation of faujasite-aluminosilicate gels at 60–105 °C.Deutsches patent DE 2605083. 1977 Aug 18.

[20] Barrer RM, Lee JA. Hydrocarbons in zeolite L: II. Entropy, physical state and isotherm model. Surf Sci 1968;12(2):354–68 link1

[21] Barrer RM. Syntheses and reactions of mordenite. J Chem Soc 1948:2158–63 link1

[22] Bertsch L, Habgood HW. An infrared spectroscopic study of the adsorption of water and carbon dioxide molecular sieve X. J Phys Chem 1963;67(8):1621–8 link1

[23] Howell PA. Low angle X-ray scattering from synthetic zeolites: Zeolites A, X and Y. J Phys Chem 1960;64(3):364–7 link1

[24] Habgood HW. Surface OH group on zeolite X. J Phys Chem 1965;69(5):1764–8 link1

[25] Nishimura Y. Synthesis and physico-chemical property of zeolite L. Japan J Chem 1970;91(23):1046–9. Japanese link1

[26] Eberly PE Jr. Adsorption and separation of hydrocarbons on mordenite zeolites. Ind Eng Chem Prod Res Dev 1971;10(4):433–7 link1

[27] Baijpai PK, Rao MS, Gokhale KVGK. Synthesis of mordenite type zeolites. Ind Eng Chem Prod Res Dev 1978;17(3):223–7 link1

[28] Barrer RM, Denny PJ. Hydrothermal chemistry of the silicates. Part IX. Nitrogenous aluminosilicates. J Chem Soc 1961:971–82 link1

[29] Argauer RJ, Landolt GR. Crystalline zeolite ZSM-5 and method of preparing the same.United States patent US 3702886. 1972 Nov 14.

[30] Beck LW, Davis ME. Alkylammonium polycations as structure-directing agents in MFI zeolite synthesis. Microporous Mesoporous Mater 1998;22(1–3):107–14 link1

[31] Jia CJ, Masslani P, Bartjomeuf D. Characterization by infrared and nuclear magnetic resonance spectroscopies of calcined beta zeolite. J Chem Soc Faraday Trans 1993;89(19):3659–65 link1

[32] Pérez-Pariente J, Sanz J, Fornés V, Corma A. 29Si and 27Al MAS NMR study of zeolite β with different Si/Al rations. J Catal 1990;124(1):217–23 link1

[33] Pérez-Pariente J,?Martens JA,?Jacobs PA.?Factors?affecting?the?synthesis?efficiency?of?zeolite?beta?from?aluminosilicate?gels?containing?alkali?and?tetraethylammonium?ions.?Zeolite?1988;8(1):46–53 link1

[34] Gao XT, Yeh CY, Angevine P. Mechanistic study of organic template removal from ZSM-5 precursors. Microporous Mesoporous Mater 2004;70(1–3):27–35 link1

[35] Oleksiak MD, Rimer JD. Synthesis of zeolites in the absence of organic structure-directing agents: Factors governing crystal selection and polymorphism. Rev Chem Eng 2014;30(1):1–49 link1

[36] Grose RW, Flanigen EM. Novel zeolite compositions and processes for preparing and using same.United States patent US 4257885. 1981 Mar 24.

[37] Li H, Xiang S, Wu D, Liu Y, Zhang X, Liu S. Study on the synthesis of zeolite ZSM-5. Chem J Chin Univ 1981;2(4):517–9. Chinese.

[38] Shiralkar VP, Clearfield A. Synthesis of the molecular sieve ZSM-5 without the aid of templates. Zeolite 1989;9(5):363–70 link1

[39] Narita E, Sato K, Yatabe N, Okabe T. Synthesis and crystal growth of zeolite ZSM-5 from sodium aluminosilicate systems free of organic templates. Ind Eng Chem Prod Res Dev 1985;24(4):507–12 link1

[40] Narayanan S, Sultana A, Krishna K, Mériaudeau P, Naccache C. Synthesis of ZSM-5 type zeolites with and without template and evaluation of physicochemical properties and aniline alkylation activity. Catal Lett 1995;34(1):129–38 link1

[41] Xie B, Song J, Ren L, Ji Y, Li J, Xiao F. Organotemplate-free and fast route for synthesizing beta zeolite. Chem Mater 2008;20(14):4533–5 link1

[42] Wang Y, Xiao F. Understanding mechanism and designing strategies for sustainable synthesis of zeolites: A personal story. Chem Rec 2016;16(3):1054–66 link1

[43] Corma A, Davis ME. Issues in the synthesis of crystalline molecular sieves: Towards the crystallization of low framework-density structures. ChemPhysChem 2004;5(3):304–13 link1

[44] de Moor PPEA, Beelen TPM, Komanschek BU, Bech LW, Wagner P, Davis ME, et al.Imaging the assembly process of the organic-mediated synthesis of a zeolite. Chemistry 1999;5(7):2083–8 link1

[45] Zhou Q, Li B, Qiu S, Pang W. Synthesis of low Si/Al β zeolite by using nucleation gel. Chem J Chin Univ 1999;20(5):693–5. Chinese.

[46] Zhou Q, Qiu S, Pang W. Study on the crystallization mechanism of β zeolite synthesized with nucleation gel. Chem J Chin Univ 2000;21(1):1–4. Chinese.

[47] Xiong X, Fan F, Jun M, Li C, Liu S, Feng Z, et al.Fast crystallization of LTA zeolite from highly efficient NaY seed solution. Chem J Chin Univ 2007;28(1):21–5. Chinese.

[48] Xie B, Zhang H, Yang C, Liu S, Ren L, Zhang L, et al.Seed-directed synthesis of zeolites with enhanced performance in the absence of organic templates. Chem Commun 2011;47(13):3945–7 link1

[49] Zhang H, Xie B, Meng X, Müller U, Yilmaz B, Feyen M, et al.Rational synthesis of beta zeolite with improved quality by decreasing crystallization temperature in organotemplate-free route. Microporous Mesoporous Mater 2013;180:123–9 link1

[50] Otomo R, Yokoi T. Effect of the Al content in the precursor on the crystallization of OSDA-free beta zeolite. Microporous Mesoporous Mater 2016;224:155–62 link1

[51] Majano G, Delmotte L, Valtchev V, Mintova S. Al-rich zeolite beta by seeding in the absence of organic template. Chem Mater 2009;21(18):4184–91 link1

[52] Smith JV, Pluth JJ, Boqqs RC, Howard DG. Tschernichite, the mineral analogue of zeolite beta. J Chem Soc Chem Commun 1991;(6):363–4 link1

[53] Boggs RC, Howard DG, Smith JV, Klein GL. Tschernichite, a new zeolite from Goble, Columbia County, Oregon. Am Mineral 1993;78(7):822–6.

[54] Szostak R, Pan M, Lillerud KP. High-resolution TEM imaging of extreme faulting in natural zeolite tschernichite. J Phys Chem 1995;99(7):2104–9 link1

[55] De Ruite R, Famine K, Kentgens APM, Jansen JC, van Bekkum H. Synthesis of molecular sieve [B]-BEA and modification of the boron site. Zeolite 1993;13(8):611–21 link1

[56] Lohse U, Altrichter B, Donath R, Fricke R, Jancke K, Parlitz B, et al.Synthesis of zeolite beta. Part 1—Using tetraethylammonium hydroxide bromide with addition of chelates as templating agents. J Chem Soc Faraday Trans 1996;92(1):159–65 link1

[57] Camblor MA, Corma A, Iborra S, Miquel S, Primo J, Valencia S. Beta zeolite as a catalyst for the preparation of alkyl glucoside surfactants: The role of crystal size and hydrophobicity. J Catal 1997;172(1):76–84 link1

[58] Martinez-Franco R, Paris C, Martines-Armero ME, Martinez C, Moliner M, Corma A. High-silica nanocrystalline beta zeolites: Efficient synthesis and catalytic application. Chem Sci 2016;7(1):102–8 link1

[59] Borade RB, Clearfield AC. Synthesis of zeolite beta from dense system containing a minimum of template. Catal Lett 1994;26(3):285–9 link1

[60] Eapen MJ, Reddy KSN, Shiralkar VP. Hydrothermal crystallization of zeolite beta using tetraethylammonium bromide. Zeolite 1994;14(4):295–302 link1

[61] Van der Waal JC, Rigutto MS, van Bekkum H. Synthesis of all-silica zeolite beta. J Chem Soc, Chem Commun 1994;(10):1241–2 link1

[62] Kamimura Y, Chailittisilp W, Itabashi K, Shimojima A, Okubo T. Critical factors in the seed-assisted synthesis of zeolite beta and “green beta” from OSDA-free Na+-aluminosilicate gels. Chem Asian J 2010;5(10):2182–91 link1

[63] Yokoi T, Yoshioka M, Imai H, Tatsumi T. Diversification of RTH-type zeolite and its catalytic application. Angew Chem Int Ed 2009;48(52):9884–7 link1

[64] Vortmann S, Marler B, Gies H, Daniels P. Synthesis and crystal structure of the new borosilicate zeolite RUB-13. Microporous Mater 1995;4(2–3):111–21 link1

[65] Liu M, Yokoi T, Yoshioka M, Imai H, Kondo JN, Tatsumi T. Differences in Al distribution and acidic properties between RTH-type zeolites synthesized with OSDAs and without OSDAs. Phys Chem Chem Phys 2014;16(9):4155–64 link1

[66] Kamimura Y, Itabashi K, Okubo T. Seed-assisted, OSDA-free synthesis of MTW-type zeolite and “green MTW” from sodium aluminosilicate gel systems. Microporous Mesoporous Mater 2012;147(1):149–56 link1

[67] Kamimura Y, Iyoki K, Elangovan SP, Itabashi K, Shimojima A, Okubo T. OSDA-free synthesis of MTW-type zeolite from sodium aluminosilicate gels with zeolite beta seeds. Microporous Mesoporous Mater 2012;163:282–90 link1

[68] Itabashi K, Kamimura Y, Iyoki K, Shimojima A, Okubo T. A working hypothesis for broadening framework types of zeolites in seed-assisted synthesis without organic structure-directing agent. J Am Chem Soc 2012;134(28):11542–9 link1

[69] Zhang H, Yang C, Zhu L, Meng X, Yilmaz B, Müller U, et al.Organotemplate-free and seed-directed synthesis of levyne zeolite. Microporous Mesoporous Mater 2012;155:1–7 link1

[70] Yang C, Ren L, Zhang H, Zhu L, Wang L, Meng X, et al.Organotemplate-free and seed-directed synthesis of ZSM-34 zeolite with good performance in methanol-to-olefins. J Mater Chem 2012;22(24):12238–45 link1

[71] Wu Q, Wang X, Meng X, Yang C, Liu Y, Jin Y, et al. Organotemplate-free, seed-directed, and rapid synthesis of Al-rich zeolite MTT with improved catalytic performance in isomerization of m-xylene. Microporous Mesoporous Mater 2014;186:106–12 link1

[72] Wang Y, Wang X, Wu Q, Meng X, Jin Y, Zhou X, et al.Seed-directed and organotemplate-free synthesis of TON zeolite. Catal Today 2014;226:103–8 link1

[73] Moller K, Bein T. Crystallization and porosity of ZSM-23. Microporous Mesoporous Mater 2011;143(2–3):253–62 link1

[74] Masih D, Kobayashi T, Baba T. Hydrothermal synthesis of pure ZSM-22 under mild conditions. Chem Commun 2007;(31):3303–5 link1

[75] Yoshioka M, Yokoi T, Liu M, Imai H, Inagaki S, Tatsumi T. Preparation of RTH-type zeolites with the amount and/or kind of organic structure-directing agents (OSDA): Are OSDAs indispensable for the crystallization. Microporous Mesoporous Mater 2012;153:70–8 link1

[76] Zhang L, Yang C, Meng X, Xie B, Wang L, Ren L, et al.Organotemplate-free syntheses of ZSM-34 zeolite and its heteroatom-substituted analogues with good catalytic performance. Chem Mater 2010;22(10):3099–107 link1

[77] Zhang H, Chu L, Xiao Q, Zhu L, Yang C, Meng X, et al.One-pot synthesis of Fe-beta zeolite by an organotemplate-free and seed-directed route. J Mater Chem A 2013;1(10):3254–7 link1

[78] Itakura M, Goto I, Takahashi A, Fujitani T, Ide Y, Sadakane M, et al.Synthesis of high-silica CHA type zeolite by interzeolite conversion of FAU type zeolite in the presence of seed crystals. Microporous Mesoporous Mater 2011;144(1–3):91–6 link1

[79] Yashiki A, Honda K, Fujimoto A, Shibata S, Ide Y, Sadakane M, et al.Hydrothermal conversion of FAU zeolite into LEV zeolite in the presence of non-calcined seed crystals. J Cryst Growth 2011;325(1):96–100 link1

[80] Honda K, Yashiki A, Itakura M, Ide Y, Sadakane M, Sano T. Influence of seeding on FAU–*BEA interzeolite conversions. Microporous Mesoporous Mater 2011;142(1):161–7 link1

[81] Honda K, Yashiki A, Sadakane M, Sano T. Hydrothermal conversion of FAU and *BEA-type zeolites into MAZ-type zeolites in the presence of non-calcined seed crystals. Microporous Mesoporous Mater 2014;196:254–60 link1

[82] Goel S, Zones SI, Iglesia E. Synthesis of zeolites via interzeolite transformations without organic structure-directing agents. Chem Mater 2015;27(6):2056–66 link1

[83] Zhang Z, Han Y, Xiao F, Qiu S, Zhu L, Wang R, et al.Mesoporous aluminosilicates with ordered hexagonal structure, strong acidity, and extraordinary hydrothermal stability at high temperatures. J Am Chem Soc 2001;123(21):5014–21 link1

[84] Liu J, Zhang X, Han Y, Xiao F. Direct observation of nanorange ordered microporosity within mesoporous molecular sieves. Chem Mater 2002;14(6):2536–40 link1

[85] Wu Z, Song J, Ji Y, Ren L, Xiao F. Organic template-free synthesis of ZSM-34 zeolite from an assistance of zeolite L seeds solution. Chem Mater 2008;20(22):357–9 link1

[86] Rubin MK, Rosinski EJ, Plank CJ. Hydrocarbon conversion with crystalline zeolite ZSM-34.United States patent US 4116813. 1978 Sep 26.

[87] Zhou F, Tian P, Liu Z, Liu G, Chang F, Li J. Synthesis of ZSM-34 and its catalytic properties in methanol-to-olefins reaction. Chin J Catal 2007;28(9):817–22 link1

[88] Vartuli JC, Kennedy GJ, Yoon BA, Malek A. Zeolite syntheses using diamines: Evidence for in situ directing agent modification. Microporous Mesoporous Mater 2000;38(2–3):247–54 link1

[89] Zhang H, Guo Q, Ren L, Yang C, Zhu L, Meng X, et al.Organotemplate-free synthesis of high-silica ferrierite zeolite induced by CDO-structure zeolite building units. J Mater Chem 2011;21(26):9494–7 link1

[90] Suzuki Y, Wakihara T, Itabashi K, Ogura M, Okubo T. Cooperative effect of sodium and potassium cations on synthesis of ferrierite. Top Catal 2009;52(1):67–74 link1

[91] Iyoki K, Takase M, Itabashi K, Muraoka K, Chaikittisilp W, Okubo T. Organic structure-directing agent-free synthesis of NES-type zeolites using EU-1 seed crystals. Microporous Mesoporous Mater 2015;215:191–8 link1

[92] Awala H, Gilson JP, Retoux R, Boullay P, Goupil JM, Valtchev V, et al.Template-free nanosized faujasite-type zeolites. Nat Mater 2015;14(4):447–51 link1

[93] Xie B. Seeded syntheses of zeolites in the absence of organic templates [dissertation]. Changchun: Jilin University; 2009. Chinese.

[94] Majano G, Darwiche A, Mintova S, Valtchev V. Seed-induced crystallization of nanosized Na-ZSM-5 crystals. Ind Eng Chem Res 2009;48(15):7084–91 link1

[95] Fan W, Shirato S, Gao F, Ogura M, Okubo T. Phase selection of FAU and LTA zeolites by controlling synthesis parameters. Microporous Mesoporous Mater 2006;89(1–3):227–34 link1

[96] Kapko V, Dawson C, Treacy MMJ, Thorpe MF. Flexibility of ideal zeolite frameworks. Phys Chem Chem Phys 2010;12(30):8531–41 link1

[97] Xu R, Pang W, Yu J, Huo Q, Chen J. Chemistry—Zeolite and porous material.Beijing: Science Press; 2004. Chinese.

[98] Zones SI. Zeolite SSZ-13 and its method of preparation.United States patent US 4544538. 1985 Oct 1.

[99] Zones SI. Conversion of faujasites to high-silica chabazite SSZ-13 in the presence of N,N,N-trimethyl-l-adamantammonium iodide. J Chem Soc Faraday Trans 1991;87(22):3709–16 link1

[100] Zones SI. Direct hydrothermal conversion of cubic P zeolite to organozeolite SSZ-13. J Chem Soc Faraday Trans 1990;86(20):3467–72 link1

[101] Wang X, Wu Q, Chen C, Pan S, Zhang W, Meng X, et al.Atom-economical synthesis of a high silica CHA zeolite using a solvent-free route. Chem Commun 2015;51(95):16920–3 link1

[102] Imai H, Hayashida N, Yokoi T, Tatsumi T. Direct crystallization of CHA-type zeolite from amorphous aluminosilicate gel by seed-assisted method in the absence of organic-structure-directing agents. Microporous Mesoporous Mater 2014;196:341–8 link1

[103] Ren L, Zhu L, Yang C, Chen Y, Sun Q, Zhang H, et al.Designed copper-amine complex as an efficient template for one-pot synthesis of Cu-SSZ-13 zeolite with excellent activity for selective catalytic reduction of NOx by NH3. Chem Commun 2011;47(35):9789–91 link1

[104] Wu Q, Wang X, Qi G, Pan S, Meng X, Xu J, et al.Sustainable synthesis of zeolite without addition of both organotemplates and solvents. J Am Chem Soc 2014;136(10):4019–25 link1

[105] Chen Z, Li S, Yan Y. Synthesis of template-free zeolite nanocrystals by reverse microemulsion-microwave method. Chem Mater 2005;17(9):2262–6 link1

[106] Wang Y, Sun Y, Mu Y, Zhang C, Li J, Yu J. Organotemplate-free hydrothermal synthesis of an aluminophosphate molecular sieve with AEN zeotype topology and properties of its derivatives. Chem Commun 2014;50(97):15400–3 link1

[107] Mu Y, Wang Y, Li Y, Yu J. Organotemplate-free synthesis of an open-framework magnesium aluminophosphate with proton conduction properties. Chem Commun 2015;51(11):2149–51 link1

[108] Sun Y, Yan Y, Wang Y, Li Y, Li J, Yu J. High proton conduction in a new alkali metal-templated open-framework aluminophosphate. Chem Commun 2015;51(45):9317–9 link1

Related Research