Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2018, Volume 4, Issue 3 doi: 10.1016/j.eng.2018.05.006

Carbon Sequestration through CO2 Foam-Enhanced Oil Recovery: A Green Chemistry Perspective

Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA

Received: 2017-12-13 Revised: 2018-01-26 Accepted: 2018-05-14 Available online: 2018-05-21

Next Previous

Abstract

Enhanced oil recovery (EOR) via carbon dioxide (CO2) flooding has received a considerable amount of attention as an economically feasible method for carbon sequestration, with many recent studies focusing on developing enhanced CO2 foaming additives. However, the potential long-term environmental effects of these additives in the event of leakage are poorly understood and, given the amount of additives injected in a typical CO2 EOR operation, could be far-reaching. This paper presents a summary of recent developments in surfactant and surfactant/nanoparticle-based CO2 foaming systems, with an emphasis on the possible environmental impacts of CO2 foam leakage. Most of the surfactants studied are unlikely to degrade under reservoir conditions, and their release can cause major negative impacts on wildlife. With recent advances in the use of additives (e.g., nonionic surfactants, nanoparticles, and other chemicals) the use of harsh anionic surfactants may no longer be warranted. This paper discusses recent advances in producing foaming systems, and highlights possible strategies to develop environmentally friendly CO2 EOR methods.

Figures

Fig.1

References

[ 1 ] Moritis G. CO2 miscible, steam dominate enhanced oil recovery processes. Oil Gas J Tulsa 2010;108(14):36–40. link1

[ 2 ] Enick RM, Olsen DK. Mobility and conformance control for carbon dioxide enhanced oil recovery (CO2-EOR) via thickeners, foams, and gels—a detailed literature review of 40 years of research. Report. Pittsburgh: National Energy Technology Laboratory, US Department of Energy; 2012.

[ 3 ] Duda JR, Kuuskraa V, Godec M, Van Leeuwen T. Modeling exercises assess US CO2-EOR potential. Oil Gas J Tulsa 2010;108(13):52–5. link1

[ 4 ] Bernard GC, Holm LW, Harvey CP. Use of surfactant to reduce CO2 mobility in oil displacement. SPE J 1980;20(4):281–92. link1

[ 5 ] Eastoe J, Hatzopoulos MH, Tabor R. Microemulsions. In: Tadros T, editor. Encyclopedia of colloid and interface science. Berlin: Springer-Verlag; 2013. p. 688–728. link1

[ 6 ] Li RF, Yan W, Liu S, Hirasaki GJ, Miller CA. Foam mobility control for surfactant enhanced oil recovery. SPE J 2010;15(4):928–48. link1

[ 7 ] Hirasaki GJ, Miller CA, Puerto M. Recent advances in surfactant EOR. SPE J 2011;16(4):889–907. link1

[ 8 ] Xing D, Wei B, McLendon W, Enick RM, McNulty S, Trickett K, et al. CO2- soluble, nonionic, water-soluble surfactants that stabilize CO2-in-brine foams. SPE J 2012;17(4):1172–85. link1

[ 9 ] Cummings S, Enick R, Rogers S, Heenan R, Eastoe J. Amphiphiles for supercritical CO2. Biochimie 2012;94(1):94–100. link1

[10] Sagir M, Tan IM, Mushtaq M, Talebian SH. FAWAG using CO2-philic surfactants for CO2 mobility control for enhanced oil recovery applications. In: Proceedings of the SPE Saudi Arabia Section Technical Symposium and Exhibition; 2014 Apr 21–24; Al-Khobar, Saudi Arabia. Richardson: Society of Petroleum Engineers; 2014. link1

[11] Basics of green chemistry [Internet]. Washington, DC: Green Chemistry Program, US Environmental Protection Agency; [cited 2017 Nov 4]. Available from: https://www.epa.gov/greenchemistry/basics-green-chemistry. link1

[12] Iribarren D, Petrakopoulou F, Dufour J. Environmental and thermodynamic evaluation of CO2 capture, transport and storage with and without enhanced resource recovery. Energy 2013;50:477–85. link1

[13] Aarra MG, Skauge A, Solbakken J, Ormehaug PA. Properties of N2- and CO2-foams as a function of pressure. J Petrol Sci Eng 2014;116:72–80. link1

[14] Perera M, Gamage R, Rathnaweera T, Ranathunga A, Koay A, Choi X. A review of CO2-enhanced oil recovery with a simulated sensitivity analysis. Energies 2016;9(12):481. link1

[15] Talebian SH, Masoudi R, Tan IM, Zitha PLJ. Foam assisted CO2-EOR: a review of concept, challenges, and future prospects. J Petrol Sci Eng 2014;120:202–15. link1

[16] Shamsijazeyi H, Miller CA, Wong MS, Tour JM, Verduzco R. Polymer-coated nanoparticles for enhanced oil recovery. J Appl Polym Sci 2014;131 (15):4401–4. link1

[17] Barnes JR, Regalado DP, Doll MJ, King TE, Pretzer LE, Semple TC. Essentials of upscaling surfactants for EOR field projects. In: Proceedings of the Twentieth SPE Improved Oil Recovery Conference; 2016 Apr 11–13; Tulsa, OK, USA. Red Hook: Curran Associates, Inc.; 2016. p. 681–98. link1

[18] Li D, Ren B, Zhang L, Ezekiel J, Ren S, Feng Y. CO2-sensitive foams for mobility control and channeling blocking in enhanced WAG process. Chem Eng Res Des 2015;102:234–43. link1

[19] Zhang YM, Chu ZL, Dreiss CA, Wang YJ, Fei CH, Feng YJ. Smart wormlike micelles switched by CO2 and air. Soft Matter 2013;9(27):6217–21. link1

[20] Zhang YM, Feng YJ, Wang YJ, Li XL. CO2-switchable viscoelastic fluids based on a pseudogemini surfactant. Langmuir 2013;29(13):4187–92. link1

[21] Sagir M, Tan IM, Mushtaq M, Pervaiz M, Tahir MS, Shahzad K. CO2 mobility control using CO2-philic surfactant for enhanced oil recovery. J Pet Explor Prod Technol 2016;6(3):401–7. link1

[22] Talebian SH, Tan IM, Sagir M, Muhammad M. Static and dynamic foam/oil interactions: potential of CO2-philic surfactants as mobility control agents. J Petrol Sci Eng 2015;135:118–26. link1

[23] Farzaneh SA, Sohrabi M. Experimental investigation of CO2-foam stability improvement by alkaline in the presence of crude oil. Chem Eng Res Des 2015;94:375–89. link1

[24] Xu X, Saeedi A, Liu K. An experimental study of combined foam/surfactant polymer (SP) flooding for carbon dioxide-enhanced oil recovery (CO2-EOR). J Petrol Sci Eng 2017;149:603–11. link1

[25] Xu X, Saeedi A, Liu K. Experimental study on a novel foaming formula for CO2 foam flooding. J Energy Resour Technol 2017;139(2):022902. link1

[26] Lv M, Wang S. Studies on CO2 foam stability and the influence of polymer on CO2 foam properties. Int J Oil Gas Coal Technol 2015;10:343–58. link1

[27] Lv W, Li Y, Li Y, Zhang S, Deng QH, Yang Y, et al. Ultra-stable aqueous foam stabilized by water-soluble alkyl acrylate crosspolymer. Colloids Surf Physicochem Eng Asp 2014;457:189–95. link1

[28] Memon MK, Elraies KA, Al-Mossawy MI. Impact of new foam surfactant blend with water alternating gas injection on residual oil recovery. J Pet Explor Prod Technol 2017;7(3):843–51. link1

[29] AttarHamed F, Zoveidavianpoor M. The foaming behavior and synergistic effect in aqueous CO2 foam by in situ physisorption of alpha olefin sulfonate and triton X-100 surfactants and their mixture. Petrol Sci Technol 2014;32 (19):2376–86. link1

[30] Wang C, Li HA. Stability and mobility of foam generated by gas- solvent/surfactant mixtures under reservoir conditions. J Nat Gas Sci Eng 2016;34:366–75. link1

[31] Wang Y, Zhang Y, Liu Y, Zhang L, Ren S, Lu J, et al. The stability study of CO2 foams at high pressure and high temperature. J Petrol Sci Eng 2017;154:234–43. link1

[32] Dey S, Malik S, Ghosh A, Saha R, Saha B. A review on natural surfactants. RSC Adv 2015;5(81):65757–67. link1

[33] Yuan Q, Wang XH, Dandekar A, Sun CY, Li QP, Ma ZW, et al. Replacement of methane from hydrates in porous sediments with CO2-in-water emulsions. Ind Eng Chem Res 2014;53(31):12476–84. link1

[34] Tang J, Quinlan PJ, Tam KC. Stimuli-responsive Pickering emulsions: recent advances and potential applications. Soft Matter 2015;11(18):3512–29. link1

[35] Liu N. Nanoparticle-stabilized CO2 foam for CO2 EOR application. Final report. Pittsburgh: National Energy Technology Laboratory, US Department of Energy; 2015 Apr. link1

[36] Sun X, Zhang Y, Chen G, Gai Z. Application of nanoparticles in enhanced oil recovery: a critical review of recent progress. Energies 2017;10(3):345. link1

[37] Yekeen N, Idris AK, Manan MA, Samin AM, Risal AR, Kun TX. Bulk and bubble- scale experimental studies of influence of nanoparticles on foam stability. Chin J Chem Eng 2017;25(3):347–57. link1

[38] Kalyanaraman N, Arnold C, Gupta A, Tsau JS, Ghahfarokhi RB. Stability improvement of CO2 foam for enhanced oil-recovery applications using polyelectrolytes and polyelectrolyte complex nanoparticles. J Appl Polym Sci 2017;134(6):44491. link1

[39] Zhang C, Li Z, Sun Q, Wang P, Wang S, Liu W. CO2 foam properties and the stabilizing mechanism of sodium bis(2-ethylhexyl) sulfosuccinate and hydrophobic nanoparticle mixtures. Soft Matter 2016;12(3):946–56. link1

[40] Li S, Li Z, Wang P. Experimental study of the stabilization of CO2 foam by sodium dodecyl sulfate and hydrophobic nanoparticles. Ind Eng Chem Res 2016;55(5):1243–53. link1

[41] Rognmo AU, Horjen H, Fernø M. Nanotechnology for improved CO2 utilization in CCS: laboratory study of CO2-foam flow and silica nanoparticle retention in porous media. Int J Greenhouse Gas Control 2017;64:113–8. link1

[42] AttarHamed F, Zoveidavianpoor M, Jalilavi M. The incorporation of silica nanoparticle and alpha olefin sulphonate in aqueous CO2 foam: investigation of foaming behavior and synergistic effect. Petrol Sci Technol 2014;32 (21):2549–58. link1

[43] Li S, Qiao C, Li Z, Wanambwa S. Properties of carbon dioxide foam stabilized by hydrophilic nanoparticles and hexadecyltrimethylammonium bromide. Energy Fuels 2017;31(2):1478–88. link1

[44] Farhadi H, Riahi S, Ayatollahi S, Ahmadi H. Experimental study of nanoparticle- surfactant-stabilized CO2 foam: stability and mobility control. Chem Eng Res Des 2016;111:449–60. link1

[45] Emrani AS, Nasr-El-Din HA. Stabilizing CO2 foam by use of nanoparticles. SPE J 2017;22(2):494–504. link1

[46] Emrani AS, Nasr-El-Din HA. An experimental study of nanoparticle-polymer- stabilized CO2 foam. Colloids Surf Physicochem Eng Asp 2017;524:17–27.

[47] Manan MA, Farad S, Piroozian A, Esmail MJA. Effects of nanoparticle types on carbon dioxide foam flooding in enhanced oil recovery. Petrol Sci Technol 2015;33(12):1286–94. link1

[48] Dong X, Xu J, Cao C, Sun D, Jiang X. Aqueous foam stabilized by hydrophobically modified silica particles and liquid paraffin droplets. Colloids Surf Physicochem Eng Asp 2010;353(2–3):181–8. link1

[49] Yang W, Wang T, Fan Z, Miao Q, Deng Z, Zhu Y. Foams stabilized by in situ-modified nanoparticles and anionic surfactants for enhanced oil recovery. Energy Fuels 2017;31(5):4721–30. link1

[50] Singh R, Mohanty KK. Synergy between nanoparticles and surfactants in stabilizing foams for oil recovery. Energy Fuels 2015;29(2):467–79. link1

[51] Yang W, Wang T, Fan Z. Highly stable foam stabilized by alumina nanoparticles for EOR: effects of sodium cumenesulfonate and electrolyte concentrations. Energy Fuels 2017;31(9):9016–25. link1

[52] Guo F, Aryana S. An experimental investigation of nanoparticle-stabilized CO2 foam used in enhanced oil recovery. Fuel 2016;186:430–42. link1

[53] Lee D, Cho H, Lee J, Huh C, Mohanty K. Fly ash nanoparticles as a CO2 foam stabilizer. Powder Technol 2015;283:77–84. link1

[54] Kumar S, Mandal A. Investigation on stabilization of CO2 foam by ionic and nonionic surfactants in presence of different additives for application in enhanced oil recovery. Appl Surf Sci 2017;420:9–20. link1

[55] Wang J, Xue G, Tian B, Li S, Chen K, Wang D, et al. Interaction between surfactants and SiO2 nanoparticles in multiphase foam and its plugging ability. Energy Fuels 2017;31(1):408–17. link1

[56] Al-Anssari S, Arif M, Wang S, Barifcani A, Iglauer S. Stabilising nanofluids in saline environments. J Colloid Interface Sci 2017;508:222–9. link1

[57] Liu LC, Li Q, Zhang JT, Cao D. Toward a framework of environmental risk management for CO2 geological storage in China: gaps and suggestions for future regulations. Mitig Adapt Strategies Global Change 2016;21(2):191–207. link1

[58] Xue L, Ma J, Wang S, Li Q, Ma J, Yu H, et al. Effects of CO2 leakage from CCS on the physiological characteristics of C4 crops. Energy Procedia 2014;63:3209–14. link1

[59] Koornneef J, Ramírez A, Turkenburg W, Faaij A. The environmental impact and risk assessment of CO2 capture, transport and storage—an evaluation of the knowledge base using the DPSIR framework. Energy Procedia 2011;4:2293–300. link1

[60] Hamoodi AN, Abed AF, Firoozabadi A. Compositional modelling of two-phase hydrocarbon reservoirs. J Can Pet Technol 2001;40(4):49–60. link1

[61] Hoteit H, Santiso E, Firoozabadi A. An efficient and robust algorithm for the calculation of gas-liquid critical point of multicomponent petroleum fluids. Fluid Phase Equilib 2006;241(1–2):186–95. link1

[62] Santiso E, Firoozabadi A. Curvature dependency of surface tension in multicomponent systems. AIChE J 2006;52(1):311–22. link1

[63] LeNeveu DM. Potential for environmental impact due to acid gas leakage from wellbores at EOR injection sites near Zama Lake, Alberta. Greenhouse Gases Sci Technol 2012;2(2):99–114. link1

[64] Smith SA, Sorensen J, Steadman E, Harju JA. Acid gas injection and monitoring at the Zama Oil Field in Alberta, Canada: a case study in demonstration-scale carbon dioxide sequestration. Energy Procedia 2009;1(1):1981–8. link1

[65] Smith SA, Sorensen JA, Steadman EN, Harju JA, Ryan D. Zama acid gas EOR, CO2 sequestration, and monitoring project. Energy Procedia 2011;4:3957–64. link1

[66] Cai B, Li Q, Liu G, Liu L, Jin T, Shi H. Environmental concern-based site screening of carbon dioxide geological storage in China. Sci Rep 2017;7(1):7598. link1

[67] Ma J, Wang X, Gao R, Zhang X, Wei Y, Wang Z, et al. Monitoring the safety of CO2 sequestration in Jingbian Field, China. Energy Procedia 2013;37:3469–78. link1

[68] Tang Y, Yang R, Bian X. A review of sequestration projects and application in China. Sci World J 2014;2014(6):381854. link1

[69] Hawkes CD, McLellan PJ, Zimmer U, Bachu S. Geomechanical factors affecting geological storage of CO2 in depleted oil and gas reservoirs. J Can Pet Technol 2005;44(10):52–61. link1

[70] Toxics Release Inventory (TRI) Program: TRI-listed chemicals [Internet]. Washington, DC: TRI Program, US Environmental Protection Agency;[cited 2017 Nov 4]. Available from: https://www.epa.gov/toxics-release- inventory-tri-program/tri-listed-chemicals. link1

[71] Asimakopoulos AG, Thomaidis NS, Koupparis MA. Recent trends in biomonitoring of bisphenol A, 4-t-octylphenol, and 4-nonylphenol. Toxicol Lett 2012;210(2):141–54. link1

[72] Soares A, Guieysse B, Jefferson B, Cartmell E, Lester JN. Nonylphenol in the environment: a critical review on occurrence, fate, toxicity and treatment in wastewaters. Environ Int 2008;34(7):1033–49. link1

[73] Lu Z, Gan J. Isomer-specific biodegradation of nonylphenol in river sediments and structure-biodegradability relationship. Environ Sci Technol 2014;48 (2):1008–14. link1

[74] Rebello S, Asok AK, Mundayoor S, Jisha MS. Surfactants: toxicity, remediation and green surfactants. Environ Chem Lett 2014;12(2):275–87. link1

[75] Ambily PS, Rebello S, Jayachandran K, Jisha MS. A novel three-stage bioreactor for the effective detoxification of sodium dodecyl sulphate from wastewater. Water Sci Technol 2017;76(8):2167–76.

[76] Paulo AMS, Plugge CM, García-Encina PA, Stams AJM. Anaerobic degradation of sodium dodecyl sulfate (SDS) by denitrifying bacteria. Int Biodeterior Biodegrad 2013;84(5):14–20. link1

[77] Könnecker G, Regelmann J, Belanger S, Gamon K, Sedlak R. Environmental properties and aquatic hazard assessment of anionic surfactants: physico- chemical, environmental fate and ecotoxicity properties. Ecotoxicol Environ Saf 2011;74(6):1445–60. link1

[78] García MT, Campos E, Marsal A, Ribosa I. Biodegradability and toxicity of sulphonate-based surfactants in aerobic and anaerobic aquatic environments. Water Res 2009;43(2):295–302. link1

[79] Bressan M, Marin MG, Brunetti R. Effect of linear alkylbenzene sulphonate (LAS) on skeletal development of sea urchin embryos (Paracentrotus lividus Lmk). Water Res 1991;25(5):613–6. link1

[80] Mungray AK, Kumar P. Fate of linear alkylbenzene sulfonates in the environment: a review. Int Biodeterior Biodegrad 2009;63(8):981–7. link1

[81] Rosal R, Rodea-Palomares I, Boltes K, Fernández-Piñas F, Leganés F, Petre A. Ecotoxicological assessment of surfactants in the aquatic environment: combined toxicity of docusate sodium with chlorinated pollutants. Chemosphere 2010;81(2):288–93. link1

[82] Merrettig-Bruns U, Jelen E. Anaerobic biodegradation of detergent surfactants. Material (Basel) 2009;2(1):181–206. link1

[83] Olkowska E, Polkowska Z_ , Namies´nik J. Analytics of surfactants in the environment: problems and challenges. Chem Rev 2011;111(9):5667–700. link1

[84] Kim IY, Joachim E, Choi H, Kim K. Toxicity of silica nanoparticles depends on size, dose, and cell type. Nanomedicine (Lond) 2015;11(6):1407–16. link1

[85] Murugadoss S, Lison D, Godderis L, Van Den Brule S, Mast J, Brassinne F, et al. Toxicology of silica nanoparticles: an update. Arch Toxicol 2017;91 (9):2967–3010. link1

[86] Chen Q, Xue Y, Sun J. Kupffer cell-mediated hepatic injury induced by silica nanoparticles in vitro and in vivo. Int J Nanomed 2013;8:1129–40. link1

[87] Chen X, Wang Z, Zhou J, Fu X, Liang J, Qiu Y, et al. Renal interstitial fibrosis induced by high-dose mesoporous silica nanoparticles via the NF-jB signaling pathway. Int J Nanomed 2014;10:1–22. link1

[88] Forest V, Pailleux M, Pourchez J, Boudard D, Tomatis M, Fubini B, et al. Toxicity of boehmite nanoparticles: impact of the ultrafine fraction and of the agglomerates size on cytotoxicity and pro-inflammatory response. Inhal Toxicol 2014;26(9):545–53. link1

Related Research