Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2018, Volume 4, Issue 4 doi: 10.1016/j.eng.2018.06.001

Progress in the Physisorption Characterization of Nanoporous Gas Storage Materials

Quantachrome Instruments, Boynton Beach, FL 33426, USA

Received: 2017-12-15 Revised: 2018-02-26 Accepted: 2018-06-05 Available online: 2018-06-12

Next Previous

Abstract

Assessing the adsorption properties of nanoporous materials and determining their structural characterization is critical for progressing the use of such materials for many applications, including gas storage. Gas adsorption can be used for this characterization because it assesses a broad range of pore sizes, from micropore to mesopore. In the past 20 years, key developments have been achieved both in the knowledge of the adsorption and phase behavior of fluids in ordered nanoporous materials and in the creation and advancement of state-of-the-art approaches based on statistical mechanics, such as molecular simulation and density functional theory. Together with high-resolution experimental procedures for the adsorption of subcritical and supercritical fluids, this has led to significant advances in physical adsorption textural characterization. In this short, selective review paper, we discuss a few important and central features of the underlying adsorption mechanisms of fluids in a variety of nanoporous materials with well-defined pore structure. The significance of these features for advancing physical adsorption characterization and gas storage applications is also discussed.

Figures

Fig.1

Fig.2

Fig.3

Fig.4

Fig.5

Fig.6

Fig.7

Fig.8

Fig.9

References

[ 1 ] Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl Chem 2015;87(9–10):1051–69. link1

[ 2 ] Thommes M. Textural characterization of zeolites and ordered mesoporous materials by physical adsorption. In: Cˇejka J, van Bekkum H, Corma A, Schüth F,editors. Introduction to zeolite science and practice. Amsterdam: Elsevier Ltd.; 2007. p. 495–523.

[ 3 ] Thommes M, Cychosz KA. Physical adsorption characterization of nanoporous materials: progress and challenges. Adsorption 2014;20(2–3):233–50.4 link1

[ 4 ] Cychosz KA, Guillet-Nicolas R, Garcia-Martinez J, Thommes M. Recent advances in the textural characterization of hierarchically structured nanoporous materials. Chem Soc Rev 2017;46(2):389–414. link1

[ 5 ] Thommes M, Cychosz KA, Neimark AV. Advanced physical adsorption characterization of nanoporous carbons. In: Tascón JMD, editor. Novel carbon adsorbents. Amsterdam: Elsevier Ltd.; 2012. p. 107–45. link1

[ 6 ] Senkovska I, Cychosz KA, Llewellyn P, Thommes M, Kaskel S. Adsorption methodology. In: Kaskel S, editor. The chemistry of metal-organic frameworks: synthesis, characterization, and applications. New York: John Wiley & Sons; 2016. p. 575–605.

[ 7 ] Lässig D, Lincke J, Moellmer J, Reichenbach C, Moeller A, Gläser R, et al. A microporous copper metal-organic framework with high H2 and CO2 adsorption capacity at ambient pressure. Angew Chem Int Ed 2011;50 (44):10344–8. link1

[ 8 ] Silvestre-Albero J, Silvestre-Albero A, Rodriguez-Reinoso F, Thommes M. Physical characterization of activated carbons with narrow microporosity by nitrogen (77.4 K), carbon dioxide (273 K) and argon (87.3 K) adsorption in combination with immersion calorimetry. Carbon 2012;50(9):3128–33. link1

[ 9 ] Neimark AV, Coudert FX, Boutin A, Fuchs AH. Stress-based model for the breathing of metal-organic frameworks. J Phys Chem Lett 2010;1(1):445–9. link1

[10] Landers J, Gor GY, Neimark AV. Density functional theory methods for characterization of porous materials. Colloids Surf A Physicochem Eng Asp 2013;437:3–32. link1

[11] Monson PA. Contact angles, pore condensation, and hysteresis: insights from a simple molecular model. Langmuir 2008;24(21):12295–302. link1

[12] Monson PA. Understanding adsorption/desorption hysteresis for fluids in mesoporous materials using simple molecular models and classical density functional theory. Microporous Mesoporous Mater 2012;160:47–66. link1

[13] Ravikovitch PI, Neimark AV. Density functional theory of adsorption in spherical cavities and pore size characterization of templated nanoporous silicas with cubic and three-dimensional hexagonal structures. Langmuir 2002;18(5):1550–60. link1

[14] Ravikovitch PI, Neimark AV. Experimental confirmation of different mechanisms of evaporation from ink-bottle type pores: equilibrium, pore blocking, and cavitation. Langmuir 2002;18(25):9830–7. link1

[15] Thommes M, Smarsly BM, Groenewolt M, Ravikovitch PI, Neimark AV. Adsorption hysteresis of nitrogen and argon in pore networks and characterization of novel micro- and mesoporous silicas. Langmuir 2006;22 (2):756–64. link1

[16] Van Bemmelen JM. Die Absorption. Des Wasser in den Kolloïden, besonders in dem Gel der Kieselsäure. Anorg Allg Chem 1897;13(1):233–356. German. link1

[17] Everett DH. The solid-gas interface. New York: Marcel Dekker; 1967. link1

[18] Cychosz KA, Guo X, Fan W, Cimino R, Gor GY, Tsapatsis M, et al. Characterization of the pore structure of three-dimensionally ordered mesoporous carbons using high resolution gas sorption. Langmuir 2012;28 (34):12647–54. link1

[19] Cimino R, Cychosz KA, Thommes M, Neimark AV. Experimental and theoretical studies of scanning adsorption-desorption isotherms. Colloids Surf A Physicochem Eng Asp 2013;437:76–89. link1

[20] Galarneau A, Desplantier D, Dutartre R, Di Renzo F. Micelle-templated silicates as a test bed for methods of mesopore size evaluation. Microporous Mesoporous Mater 1999;27(2–3):297–308. link1

[21] Rouquerol F, Rouquerol J, Peres C, Grillet Y, Boudellal M. Calorimetric study of nitrogen and argon adsorption on porous silicas. In: Gregg SJ, Sing KSW, Stoeckli HF, editors. Characterization of porous solids. Luton: The Society of Chemical Industry; 1979. p. 107–16. link1

[22] Jelinek L, Kovats E. True surface area from nitrogen adsorption experiments. Langmuir 1994;10(11):4225–31. link1

[23] Thommes M, Köhn R, Fröba M. Sorption and pore condensation behavior of pure fluids in mesoporous MCM-48 silica, MCM-41 silica, SBA-15 silica and controlled-pore glass at temperatures above and below the bulk triple point. Appl Surf Sci 2002;196(1–4):239–49. link1

[24] Lastoskie C, Gubbins KE, Quirke N. Pore size distribution analysis of microporous carbons: a density functional theory approach. J Phys Chem 1993;97(18):4786–96. link1

[25] Olivier JP, Conklin WB, Szombathely MV. Determination of pore size distribution from density functional theory: a comparison of nitrogen and argon results. Stud Surf Sci Catal 1994;87:81–9. link1

[26] Neimark AV. The method of indeterminate Lagrange multipliers in nonlocal density functional theory. Langmuir 1995;11(10):4183–4. link1

[27] Moellmer J, Celer EB, Luebke R, Cairns AJ, Staudt R, Eddaoudi M, et al. Insights on adsorption characterization of metal-organic frameworks: a benchmark study on the novel soc-MOF. Microporous Mesoporous Mater 2010;129 (3):345–53. link1

[28] Bandosz TJ, Briggs MJ, Gubbins KE, Hattori Y, Iiyama T, Kaneko K, et al. Molecular models of porous carbons. In: Radovic LR, editor. Chemistry & physics of carbon. New York: Marcel Dekker; 2003. p. 41–228. link1

[29] Thomson KT, Gubbins KE. Modeling structural morphology of microporous carbons by reverse monte carlo. Langmuir 2000;16(13):5761–73. link1

[30] Nguyen TX, Cohaut N, Bae JS, Bhatia SK. New method for atomistic modeling of the microstructure of activated carbons using hybrid reverse Monte Carlo simulation. Langmuir 2008;24(15):7912–22. link1

[31] Soares Maia DA, de Oliveria JCA, Toso JP, Sapag K, López RH, Azevedo DCS, et al. Characterization of the PSD of activated carbons from peach stones for separation of combustion gas mixtures. Adsorption 2011;17 (5):853–61. link1

[32] Jagiello J, Olivier JP. A simple two-dimensional NLDFT model of gas adsorption in finite carbon pores. Application to pore structure analysis. J Phys Chem C 2009;113(45):19382–5. link1

[33] Neimark AV, Lin Y, Ravikovitch PI, Thommes M. Quenched solid density functional theory and pore size analysis of micro-mesoporous carbons. Carbon 2009;47(7):1617–28. link1

[34] Gor GY, Thommes M, Cychosz KA, Neimark AV. Quenched solid density functional theory method for characterization of mesoporous carbons by nitrogen adsorption. Carbon 2012;50(4):1583–90. link1

[35] Hu X, Radosz M, Cychosz KA, Thommes M. CO2-filling capacity and selectivity of carbon nanopores: synthesis, texture, and pore-size distribution from quenched-solid density functional theory (QSDFT). Environ Sci Technol 2011;45(16):7068–74.

[36] Cairns AJ, Eckert J, Wojtas L, Thommes M, Wallacher D, Georgiev PA, et al. Gaining insights on the H2-sorbent interactions: robust soc-MOF platform as a case study. Chem Mater 2016;28(20):7353–61. link1

[37] Wu H, Thibault CG, Wang H, Cychosz KA, Thommes M, Li J. Effect of temperature on hydrogen and carbon dioxide adsorption hysteresis in an ultramicroporous MOF. Microporous Mesoporous Mater 2016;219: 186–9. link1

[38] Paraknowitsch JP, Thomas A. Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur, and phosphorus for energy applications. Energy Environ Sci 2013;6(10):2839–55. link1

[39] Sevilla M, Valle-Vigón P, Fuertes AB. N-doped polypyrrole-based porous carbons for CO2 capture. Adv Funct Mater 2011;21(14):2781–7. link1

[40] Ashourirad B, Arab P, Islamoglu T, Cychosz KA, Thommes M, El-Kaderi HM. A cost-effective synthesis of heteroatom-doped porous carbons as efficient CO2 sorbents. J Mater Chem A Mater Energy Sustain 2016;4(38):14693–702. link1

Related Research