Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2018, Volume 4, Issue 4 doi: 10.1016/j.eng.2018.07.005

Development and Future Challenges of Bio-Syncretic Robots

a State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China 

b University of Chinese Academy of Sciences, Beijing 100049, China 

c Emerging Technologies Institute, Department of Industrial and Manufacturing Systems Engineering, University of Hong Kong, Pokfulam, Hong Kong, China

Received: 2017-11-23 Revised: 2018-02-09 Accepted: 2018-03-21 Available online: 2018-07-17

Next Previous

Abstract

Bio-syncretic robots consisting of both living biological materials and non-living systems possess desirable attributes such as high energy efficiency, intrinsic safety, high sensitivity, and self-repairing capabilities. Compared with living biological materials or non-living traditional robots based on electromechanical systems, the combined system of a bio-syncretic robot holds many advantages. Therefore, developing bio-syncretic robots has been a topic of great interest, and significant progress has been achieved in this area over the past decade. This review systematically summarizes the development of bio-syncretic robots. First, potential trends in the development of bio-syncretic robots are discussed. Next, the current performance of bio-syncretic robots, including simple movement and controllability of velocity and direction, is reviewed. The living biological materials and non-living materials that are used in bio-syncretic robots, and the corresponding fabrication methods, are then discussed. In addition, recently developed control methods for bio-syncretic robots, including physical and chemical control methods, are described. Finally, challenges in the development of bio-syncretic robots are discussed from multiple viewpoints, including sensing and intelligence, living and non-living materials, control approaches, and information technology.

Figures

Fig. 1

References

[ 1 ] Rigelsford J. Industrial robotics: technology, programming and application. Ind Rob 1999;26(1). link1

[ 2 ] Dogangil G, Davies BL, Rodriguez y Baena F. A review of medical robotics for minimally invasive soft tissue surgery. Proc Inst Mech Eng H 2010;224 (5):653–79. link1

[ 3 ] Habib MK. Service robots in humanitarian landmine clearance. Science 1954;120(3120):604.

[ 4 ] Park JS, Kim JH, Oh YH. Feature vector classification based speech emotion recognition for service robots. IEEE Trans Consum Electron 2009;55 (3):1590–6. link1

[ 5 ] Mbemmo E, Chen Z, Shatara S, Tan X. Modeling of biomimetic robotic fish propelled by an ionic polymer-metal composite actuator. In: Proceedings of 2008 IEEE International Conference on Robotics and Automation; 2008 May 19–23; Pasadena, CA, USA. 2008. p. 689–94. link1

[ 6 ] Hirai K, Hirose M, Haikawa Y, Takenaka T. The development of Honda humanoid robot. IEEE Int Conf Robot Autom 1998;2:1321–6. link1

[ 7 ] Chan V, Asada HH, Bashir R. Utilization and control of bioactuators across multiple length scales. Lab Chip 2014;14(4):653–70. link1

[ 8 ] Ricotti L, Menciassi A. Bio-hybrid muscle cell-based actuators. Biomed Microdevices 2012;14(6):987–98. link1

[ 9 ] Darnton N, Turner L, Breuer K, Berg HC. Moving fluid with bacterial carpets. Biophys J 2004;86(3):1863–70. link1

[10] Wang W, Duan W, Ahmed S, Mallouk TE, Sen A. Small power: autonomous nano- and micromotors propelled by self-generated gradients. Nano Today 2013;8(5):531–54. link1

[11] Carlsen RW, Sitti M. Bio-hybrid cell-based actuators for microsystems. Small 2014;10(19):3831–51. link1

[12] Carlson FD, Wilkie DR. Muscle physiology. Upper Saddle River: Prentice-Hall; 1974. link1

[13] Jin M, Lee J, Chang PH, Choi C. Practical nonsingular terminal sliding-mode control of robot manipulators for high-accuracy tracking control. IEEE Trans Ind Electron 2009;56(9):3593–601. link1

[14] Blanchard CZ, Waldrop GL. Modeling, identification, and control of a pneumatically actuated, force controllable robot. IEEE Trans Rob Autom 1981;45 Pt 1(5):732–42.

[15] Xi J, Schmidt JJ, Montemagno CD. Self-assembled microdevices driven by muscle. Nat Mater 2005;4(2):180–4.

[16] Feinberg AW, Feigel A, Shevkoplyas SS, Sheehy S, Whitesides GM, Parker KK. Muscular thin films for building actuators and powering devices. Science 2007;317(5843):1366–70. link1

[17] Touyama Y, Hoshino T, Iwabuchi K, Morishima K. Micro-encapsulation of bio- actuator using insect dorsal vessel. In: Proceedings of 2009 International Symposium on Micro-NanoMechatronics and Human Science; 2009 Nov 8– 11; Nagoya, Japan. New York: IEEE; 2009. p. 644–9. link1

[18] Fujita H, Dau VT, Shimizu K, Hatsuda R, Sugiyama S, Nagamori E. Designing of a Si-MEMS device with an integrated skeletal muscle cell-based bio-actuator. Biomed Microdevices 2011;13(1):123–9. link1

[19] Akiyama Y, Hoshino T, Iwabuchi K, Morishima K. Room temperature operable autonomously moving bio-microrobot powered by insect dorsal vessel tissue. PLoS One 2012;7(7):e38274. link1

[20] Akiyama Y, Odaira K, Sakiyama K, Hoshino T, Iwabuchi K, Morishima K. Rapidly-moving insect muscle-powered microrobot and its chemical acceleration. Biomed Microdevices 2012;14(6):979–86. link1

[21] Chan V, Park K, Collens MB, Kong H, Saif TA, Bashir R. Development of miniaturized walking biological machines. Sci Rep 2012;2(1):857. link1

[22] Nawroth JC, Lee H, Feinberg AW, Ripplinger CM, McCain ML, Grosberg A, et al. A tissue-engineered jellyfish with biomimetic propulsion. Nat Biotechnol 2012;30(8):792–7. link1

[23] Kabumoto K, Hoshino T, Akiyama Y, Morishima K. Voluntary movement controlled by the surface EMG signal for tissue-engineered skeletal muscle on a gripping tool. Tissue Eng Part A 2013;19(15–16):1695–703. link1

[24] Akiyama Y, Sakuma T, Funakoshi K, Hoshino T, Iwabuchi K, Morishima K. Atmospheric-operable bioactuator powered by insect muscle packaged with medium. Lab Chip 2013;13(24):4870–80. link1

[25] Cvetkovic C, Raman R, Chan V, Williams BJ, Tolish M, Bajaj P, et al. Three- dimensionally printed biological machines powered by skeletal muscle. Proc Natl Acad Sci USA 2014;111(28):10125–30. link1

[26] Williams BJ, Anand SV, Rajagopalan J, Saif MT. A self-propelled biohybrid swimmer at low Reynolds number. Nat Commun 2014;5:3081. link1

[27] Holley MT, Nagarajan N, Danielson C, Zorlutuna P, Park K. Development and characterization of muscle-based actuators for self-stabilizing swimming biorobots. Lab Chip 2016;16(18):3473–84. link1

[28] Webster VA, Chapin KJ, Hawley EL, Patel JM, Akkus O, Chiel HJ. Aplysia californica as a novel source of material for biohybrid robots and organic machines. In: Lepora N, Mura A, Mangan M, Verschure P, Desmulliez M, Prescott T, editors. Biomimetic and biohybrid systems. Living machines 2016. Cham: Springer; 2016. p. 365–74. link1

[29] Raman R, Cvetkovic C, Uzel SG, Platt RJ, Sengupta P, Kamm RD, et al. Optogenetic skeletal muscle-powered adaptive biological machines. Proc Natl Acad Sci USA 2016;113(13):3497–502. link1

[30] Park SJ, Gazzola M, Park KS, Park S, Di Santo V, Blevins EL, et al. Phototactic guidance of a tissue-engineered soft-robotic ray. Science 2016;353 (6295):158–62. link1

[31] Webster VA, Young FR, Patel JM, Scariano GN, Akkus O, Gurkan UA. 3D- printed biohybrid robots powered by neuromuscular tissue circuits from Aplysia californica. In: Mangan M, Cutkosky M, Mura A, Verschure P, Prescott T, Lepora N, editors. Biomimetic and biohybrid systems. Living machines 2017. Cham: Springer; 2017. p. 475–86. link1

[32] Akiyama Y, Iwabuchi K, Furukawa Y, Morishima K. Biological contractile regulation of micropillar actuator driven by insect dorsal vessel tissue. In: Proceedings of the 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics; 2008 Oct 19–22; Scottsdale, AZ, USA. New York: IEEE; 2008. p. 501–5. link1

[33] Uesugi K, Shimizu K, Akiyama Y, Hoshino T, Iwabuchi K, Morishima K. Contractile performance and controllability of insect muscle-powered bioactuator with different stimulation strategies for soft robotics. Soft Robot 2016;3(1):13–22. link1

[34] Long X, Ye J, Zhao D, Zhang SJ. Magnetogenetics: remote non-invasive magnetic activation of neuronal activity with a magnetoreceptor. Sci Bull 2015;60(24):2107–19. link1

[35] Qin S, Yin H, Yang C, Dou Y, Liu Z, Zhang P, et al. A magnetic protein biocompass. Nat Mater 2016;15(2):217–26. link1

[36] Weibel DB, Garstecki P, Ryan D, DiLuzio WR, Mayer M, Seto JE, et al. Microoxen: microorganisms to move microscale loads. Proc Natl Acad Sci USA 2005;102(34):11963–7. link1

[37] Zhang C, Xie SX, Wang WX, Xi N, Wang YC, Liu LQ. Bio-syncretic tweezers actuated by microorganisms: modeling and analysis. Soft Matter 2016;12 (36):7485–94. link1

[38] Pilarek M, Neubauer P, Marx U. Biological cardio-micro-pumps for microbioreactors and analytical micro-systems. Sens Actuators B Chem 2011;156(2):517–26. link1

[39] Shimizu K, Fujita H, Nagamori E. Evaluation systems of generated forces of skeletal muscle cell-based bio-actuators. J Biosci Bioeng 2013;115 (2):115–21. link1

[40] Magdanz V, Medina-Sánchez M, Schwarz L, Xu H, Elgeti J, Schmidt OG. Spermatozoa as functional components of robotic microswimmers. Adv Mater 2017;29(24):1606301. link1

[41] Liu X, Wang X. Cardiomyocytes driven piezoelectric nanofiber generator with anisotropic enhancement. In: Proceedings of the 29th International Conference on Micro Electro Mechanical Systems; 2016 Jan 24–28; Shanghai, China. New York: IEEE; 2016. p. 1189–92. link1

[42] Raman R, Grant L, Seo Y, Cvetkovic C, Gapinske M, Palasz A, et al. Damage, healing, and remodeling in optogenetic skeletal muscle bioactuators. Adv Healthc Mater 2017;6(12):1700030. link1

[43] Turner L, Zhang R, Darnton NC, Berg HC. Visualization of flagella during bacterial swarming. J Bacteriol 2010;192(13):3259–67. link1

[44] Miyamoto T, Kojima M, Nakajima M, Homma M, Fukuda T. Rotation of bacteria sheet driven micro gear in open micro channel. In: Proceedings of 2012 IEEE International Conference on Robotics and Automation; 2012 May 14–18; Saint Paul, MN, USA. New York: IEEE; 2012. p. 4080–5. link1

[45] Steager EB, Sakar MS, Kim DH, Kumar V, Pappas GJ, Kim MJ. Electrokinetic and optical control of bacterial microrobots. J Micromech Microeng 2011;21 (3):035001. link1

[46] Sokolov A, Apodaca MM, Grzybowski BA, Aranson IS. Swimming bacteria power microscopic gears. Proc Natl Acad Sci USA 2010;107(3):969–74. link1

[47] Stanton MM, Park BW, Miguel-López A, Ma X, Sitti M, Sánchez S. Biohybrid microtube swimmers driven by single captured bacteria. Small 2017;13 (19):1603679. link1

[48] Nerbonne JM, Kass RS. Molecular physiology of cardiac repolarization. Physiol Rev 2005;85(4):1205–53. link1

[49] Tanaka Y, Sato K, Shimizu T, Yamato M, Okano T, Kitamori T. Biological cells on microchips: new technologies and applications. Biosens Bioelectron 2007;23(4):449–58. link1

[50] Yasuda SI, Sugiura S, Kobayakawa N, Fujita H, Yamashita H, Katoh K, et al. A novel method to study contraction characteristics of a single cardiac myocyte using carbon fibers. Am J Physiol Heart Circ Physiol 2001;281(3):1442–6. link1

[51] Nishimura S, Yasuda S, Katoh M, Yamada KP, Yamashita H, Saeki Y, et al. Single cell mechanics of rat cardiomyocytes under isometric, unloaded, and physiologically loaded conditions. Am J Physiol Heart Circ Physiol 2004;287 (1):196–202. link1

[52] Yin S, Zhang X, Zhan C, Wu J, Xu J, Cheung J. Measuring single cardiac myocyte contractile force via moving a magnetic bead. Biophys J 2005;88(2):1489–95. link1

[53] Addae-Mensah KA, Wikswo JP. Measurement techniques for cellular biomechanics in vitro. Exp Biol Med 2008;233(7):792–809. link1

[54] Zhang C, Wang J, Wang W, Xi N, Wang Y, Liu L. Modeling and analysis of bio- syncretic micro-swimmers for cardiomyocyte-based actuation. Bioinspir Biomim 2016;11(5):056006. link1

[55] Zimmermann WH, Melnychenko I, Eschenhagen T. Engineered heart tissue for regeneration of diseased hearts. Biomaterials 2004;25(9):1639–47. link1

[56] Baar K, Birla R, Boluyt MO, Borschel GH, Arruda EM, Dennis RG. Self- organization of rat cardiac cells into contractile 3D cardiac tissue. FASEB J 2005;19(2):275–7. link1

[57] Radisic M, Park H, Martens TP, Salazar-Lazaro JE, Geng W, Wang Y, et al. Pre- treatment of synthetic elastomeric scaffolds by cardiac fibroblasts improves engineered heart tissue. J Biomed Mater Res A 2008;86A(3):713–24. link1

[58] Tandon N, Cannizzaro C, Chao PH, Maidhof R, Marsano A, Au HT, et al. Electrical stimulation systems for cardiac tissue engineering. Nat Protoc 2009;4(2):155–73. link1

[59] Shin SR, Jung SM, Zalabany M, Kim K, Zorlutuna P, Kim SB, et al. Carbon- nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators. ACS Nano 2013;7(3):2369–80. link1

[60] Eschenhagen T, Fink C, Remmers U, Scholz H, Wattchow J, Weil J, et al. Three- dimensional reconstitution of embryonic cardiomyocytes in a collagen matrix: a new heart muscle model system. FASEB J 1997;11(8):683–94. link1

[61] Zimmermann WH, Fink C, Kralisch D, Remmers U, Weil J, Eschenhagen T. Three-dimensional engineered heart tissue from neonatal rat cardiac myocytes. Biotechnol Bioeng 2000;68(1):106–14. link1

[62] Tobita K, Liu LJ, Janczewski AM, Tinney JP, Nonemaker JM, Augustine S, et al. Engineered early embryonic cardiac tissue retains proliferative and contractile properties of developing embryonic myocardium. Am J Physiol Heart Circ Physiol 2006;291(4):H1829–37. link1

[63] Nagamine K, Kawashima T, Sekine S, Ido Y, Kanzaki M, Nishizawa M. Spatiotemporally controlled contraction of micropatterned skeletal muscle cells on a hydrogel sheet. Lab Chip 2011;11(3):513–7. link1

[64] Ahadian S, Ostrovidov S, Hosseini V, Kaji H, Ramalingam M, Bae H, et al. Electrical stimulation as a biomimicry tool for regulating muscle cell behavior. Organogenesis 2013;9(2):87–92. link1

[65] Chan V, Neal DM, Uzel SG, Kim H, Bashir R, Asada HH. Fabrication and characterization of optogenetic, multi-strip cardiac muscles. Lab Chip 2015;15(10):2258–68. link1

[66] Asano T, Ishizuka T, Morishima K, Yawo H. Optogenetic induction of contractile ability in immature C2C12 myotubes. Sci Rep 2015;5(1):8317. link1

[67] Bruegmann T, van Bremen T, Vogt CC, Send T, Fleischmann BK, Sasse P. Optogenetic control of contractile function in skeletal muscle. Nat Commun 2015;6(1):7153. link1

[68] Alford PW, Feinberg AW, Sheehy SP, Parker KK. Biohybrid thin films for measuring contractility in engineered cardiovascular muscle. Biomaterials 2010;31(13):3613–21. link1

[69] Grosberg A, Alford PW, McCain ML, Parker KK. Ensembles of engineered cardiac tissues for physiological and pharmacological study: heart on a chip. Lab Chip 2011;11(24):4165–73. link1

[70] Benam KH, Dauth S, Hassell B, Herland A, Jain A, Jang KJ, et al. Engineered in vitro disease models. Annu Rev Pathol 2015;10(1):195–262. link1

[71] Tanaka Y, Sato K, Shimizu T, Yamato M, Okano T, Manabe I, et al. Demonstration of a bio-microactuator powered by vascular smooth muscle cells coupled to polymer micropillars. Lab Chip 2008;8(1):58–61. link1

[72] Shoji K, Akiyama Y, Suzuki M, Hoshino T, Nakamura N, Ohno H, et al. Insect biofuel cells using trehalose included in insect hemolymph leading to an insect-mountable biofuel cell. Biomed Microdevices 2012;14 (6):1063–8. link1

[73] Lind JU, Busbee TA, Valentine AD, Pasqualini FS, Yuan H, Yadid M, et al. Instrumented cardiac microphysiological devices via multimaterial three- dimensional printing. Nat Mater 2017;16(3):303–8. link1

[74] Rajagopalan J, Saif MTA. Fabrication of freestanding 1D PDMS microstructures using capillary micromolding. J Microelectromech Syst 2013;22(5):992–4. link1

[75] Hill JA, Olson EN, editors. Muscle: fundamental biology and mechanisms of disease. Cambridge: Academic Press; 2012. link1

[76] Gutmann E, Guttmann L. Effect of electrotherapy on denervated muscles in rabbits. Br Med Bull 1943;239(7):169–70. link1

[77] Vandenburgh H, Shansky J, Benesch-Lee F, Skelly K, Spinazzola JM, Saponjian Y, et al. Automated drug screening with contractile muscle tissue engineered from dystrophic myoblasts. FASEB J 2009;23(10):3325–34. link1

[78] Martin NR, Passey SL, Player DJ, Mudera V, Baar K, Greensmith L, et al. Neuromuscular junction formation in tissue-engineered skeletal muscle augments contractile function and improves cytoskeletal organization. Tissue Eng Part A 2015;21(19–20):2595–604. link1

[79] Donnelly K, Khodabukus A, Philp A, Deldicque L, Dennis RG, Baar K. A novel bioreactor for stimulating skeletal muscle in vitro. Tissue Eng Part C Methods 2010;16(4):711–8. link1

[80] Ahadian S, Ramón-Azcón J, Ostrovidov S, Camci-Unal G, Hosseini V, Kaji H, et al. Interdigitated array of Pt electrodes for electrical stimulation and engineering of aligned muscle tissue. Lab Chip 2012;12(18):3491–503. link1

[81] Khodabukus A, Baar K. Defined electrical stimulation emphasizing excitability for the development and testing of engineered skeletal muscle. Tissue Eng Part C Methods 2012;18(5):349–57. link1

[82] Hosseini V, Ahadian S, Ostrovidov S, Camci-Unal G, Chen S, Kaji H, et al. Engineered contractile skeletal muscle tissue on a microgrooved methacrylated gelatin substrate. Tissue Eng Part A 2012;18(23–24):2453–65. link1

[83] Baar K, Esser K. Phosphorylation of p70S6k correlates with increased skeletal muscle mass following resistance exercise. Am J Physiol 1999;276(1): C120–7. link1

[84] Khodabukus A, Baar K. Regulating fibrinolysis to engineer skeletal muscle from the C2C12 cell line. Tissue Eng Part C Methods 2009;15(3):501–11. link1

[85] Nagamine K, Kawashima T, Ishibashi T, Kaji H, Kanzaki M, Nishizawa M. Micropatterning contractile C2C12 myotubes embedded in a fibrin gel. Biotechnol Bioeng 2010;105(6):1161–7. link1

[86] Sakar MS, Neal D, Boudou T, Borochin MA, Li Y, Weiss R, et al. Formation and optogenetic control of engineered 3D skeletal muscle bioactuators. Lab Chip 2012;12(23):4976–85. link1

[87] Asano T, Ishizua T, Yawo H. Optically controlled contraction of photosensitive skeletal muscle cells. Biotechnol Bioeng 2012;109(1):199–204. link1

[88] Romanazzo S, Forte G, Morishima K, Taniguchi A. IL-12 involvement in myogenic differentiation of C2C12 in vitro. Biomater Sci 2015;3(3):469–79. link1

[89] Yuge L, Kataoka K. Differentiation of myoblasts is accelerated in culture in a magnetic field. Vitro Cell Dev Biol Anim 2000;36(6):383–6. link1

[90] Yamamoto Y, Ito A, Kawabe Y, Fujita H, Nagamori E, Kamihira M. Magnetic force-based tissue engineering of skeletal muscle. J Biotechnol 2010;150 (Suppl):441. link1

[91] Fujita H, Shimizu K, Yamamoto Y, Ito A, Kamihira M, Nagamori E. Fabrication of scaffold-free contractile skeletal muscle tissue using magnetite-incorporated myogenic C2C12 cells. J Tissue Eng Regen Med 2010;4 (6):437–43. link1

[92] Callis TE, Deng Z, Chen JF, Wang DZ. Muscling through the microRNA world. Exp Biol Med 2008;233(2):131–8. link1

[93] Duffy RM, Feinberg AW. Engineered skeletal muscle tissue for soft robotics: fabrication strategies, current applications, and future challenges. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2014;6(2):178–95. link1

[94] Akiyama Y, Iwabuchi K, Furukawa Y, Morishima K. Culture of insect cells contracting spontaneously; research moving toward an environmentally robust hybrid robotic system. J Biotechnol 2008;133(2):261–6. link1

[95] Akiyama Y, Iwabuchi K, Furukawa Y, Morishima K. Fabrication and evaluation of temperature-tolerant bioactuator driven by insect heart cells. In: Proceedings of the Twelfth International Conference on Miniaturized Systems for Chemistry and Life Sciences; 2008 Oct 12–16; San Diego, CA, USA; 2008. p. 1669–71. link1

[96] Baryshyan AL, Woods W, Trimmer BA, Kaplan DL. Isolation and maintenance- free culture of contractile myotubes from Manduca sexta embryos. PLoS One 2012;7(2):e31598. link1

[97] Akiyama Y, Iwabuchi K, Furukawa Y, Morishima K. Electrical stimulation of cultured lepidopteran dorsal vessel tissue: an experiment for development of bioactuators. In Vitro Cell Dev Biol Anim 2010;46(5):411–5. link1

[98] Shimizu K, Takayuki H, Akiyama Y, Iwabuchi K, Akiyama Y, Yamato M, et al. Multi-scale reconstruction and performance of insect muscle powered bioactuator from tissue to cell sheet. In: Proceedings of the 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics; 2010 Sep 26–29; Tokyo, Japan. New York: IEEE; 2010. p. 425–30. link1

[99] Baryshyan AL, Domigan LJ, Hunt B, Trimmer BA, Kaplan DL. Self-assembled insect muscle bioactuators with long term function under a range of environmental conditions. RSC Adv 2014;4(75):39962–8. link1

[100] Akiyama Y, Iwabuchi K, Furukawa Y, Morishima K. Long-term and room temperature operable bioactuator powered by insect dorsal vessel tissue. Lab Chip 2009;9(1):140–4. link1

[101] Ejaz A, Lange AB. Peptidergic control of the heart of the stick insect, Baculum extradentatum. Peptides 2008;29(2):214–25. link1

[102] Martel S. Bacterial microsystems and microrobots. Biomed Microdevices 2012;14(6):1033–45. link1

[103] Kristjánsson JK, Hreggvidsson GO. Ecology and habitats of extremophiles. World J Microbiol Biotechnol 1995;11(1):17–25. link1

[104] Borghol N, Mora L, Jouenne T, Jaffezic-Renault N, Sakly N, Duncan AC, et al. Monitoring of E. coli immobilization on modified gold electrode: a new bacteria-based glucose sensor. Biotechnol. Bioprocess Eng 2010;15(2): 220–8. link1

[105] Brayner R, Couté A, Livage J, Perrette C, Sicard C. Micro-algal biosensors. Anal Bioanal Chem 2011;401(2):581–97. link1

[106] Rantala A, Utriainen M, Kaushik N, Virta M, Välimaa AL, Karp M. Luminescent bacteria-based sensing method for methylmercury specific determination. Anal Bioanal Chem 2011;400(4):1041–9. link1

[107] Su M, Ma L, Li T, Liu D, Wang Z. A microarray-based resonance light scattering assay for detecting thrombin generation in human plasma by gold nanoparticle probes. Anal Methods 2013;5(21):5895–8. link1

[108] Souiri M, Gammoudi I, Ouada HB, Mora L, Jouenne T, Jaffrezic-Renault N, et al. Escherichia coli-functionalized magnetic nanobeads as an ultrasensitive biosensor for heavy metals. Procedia Chem 2009;1(1):1027–30. link1

[109] Park D, Park SJ, Cho S, Lee Y, Lee YK, Min JJ, et al. Motility analysis of bacteria- based microrobot (bacteriobot) using chemical gradient microchamber. Biotechnol Bioeng 2014;111(1):134–43. link1

[110] Steager E, Kim CB, Patel J, Bith S, Naik C, Reber L, et al. Control of microfabricated structures powered by flagellated bacteria using phototaxis. Appl Phys Lett 2007;90(26):263901–3. link1

[111] Sitti M. Miniature devices: voyage of the microrobots. Nature 2009;458 (7242):1121–2. link1

[112] Trivedi RR, Maeda R, Abbott NL, Spagnolie SE, Weibel DB. Bacterial transport of colloids in liquid crystalline environments. Soft Matter 2015;11 (43):8404–8. link1

[113] Zhang Z, Li Z, Yu W, Li K, Xie Z. Development of a biomedical micro/nano robot for drug delivery. J Nanosci Nanotechnol 2015;15(4):3126–9. link1

[114] Park SJ, Park SH, Cho S, Kim DM, Lee Y, Ko SY, et al. New paradigm for tumor theranostic methodology using bacteria-based microrobot. Sci Rep 2013;3 (1):3394. link1

[115] Cho S, Park SJ, Ko SY, Park JO, Park S. Development of bacteria-based microrobot using biocompatible poly(ethylene glycol). Biomed Microdevices 2012;14(6):1019–25. link1

[116] Carlsen RW, Edwards MR, Zhuang J, Pacoret C, Sitti M. Magnetic steering control of multi-cellular bio-hybrid microswimmers. Lab Chip 2014;14 (19):3850–9. link1

[117] Kim MJ, Lee JH, Shin YC, Jin L, Hong SW, Han DW, et al. Stimulated myogenic differentiation of C2C12 murine myoblasts by using graphene oxide. J Korean Phys Soc 2015;67(11):1910–4. link1

[118] Bajaj P, Reddy Jr B, Millet L, Wei C, Zorlutuna P, Bao G, et al. Patterning the differentiation of C2C12 skeletal myoblasts. Integr Biol 2011;3(9):897–909. link1

[119] Takayama Y, Wagatsuma A, Hoshino T, Mabuchi K. Simple micropatterning method for enhancing fusion efficiency and responsiveness to electrical stimulation of C2C12 myotubes. Biotechnol Prog 2015;31(1):220–5. link1

[120] Anand SV, Saif TA. Emergent dynamics of cardiomyocyte clusters on deformable polymeric substrates. Extrem Mech Lett 2016;8:1–5. link1

[121] Kim DH, Park J, Suh KY, Kim P, Choi SK, Ryu S, et al. Fabrication of patterned micromuscles with high activity for powering biohybrid microdevices. Sens Actuators B Chem 2006;117(2):391–400. link1

[122] Sato M, Ito A, Kawabe Y, Nagamori E, Kamihira M. Enhanced contractile force generation by artificial skeletal muscle tissues using IGF-I gene-engineered myoblast cells. J Biosci Bioeng 2011;112(3):273–8. link1

[123] Yoon J, Eyster TW, Misra AC, Lahann J. Cardiomyocyte-driven actuation in biohybrid microcylinders. Adv Mater 2015;27(30):4509–15. link1

[124] Bhana B, Iyer RK, Chen WL, Zhao R, Sider KL, Likhitpanichkul M, et al. Influence of substrate stiffness on the phenotype of heart cells. Biotechnol Bioeng 2010;105(6):1148–60. link1

[125] Kim S, Qiu F, Kim S, Ghanbari A, Moon C, Zhang L, et al. Fabrication and characterization of magnetic microrobots for three-dimensional cell culture and targeted transportation. Adv Mater 2013;25(41):5863–8. link1

[126] Huang YC, Dennis RG, Larkin L, Baar K. Rapid formation of functional muscle in vitro using fibrin gels. J Appl Physiol 2005;98(2):706–13. link1

[127] Lee YB, Polio S, Lee W, Dai G, Menon L, Carroll RS, et al. Bio-printing of collagen and VEGF-releasing fibrin gel scaffolds for neural stem cell culture. Exp Neurol 2010;223(2):645–52. link1

[128] Webster VA, Hawley EL, Akkus O, Chiel HJ, Quinn RD. Skeletal muscle powered living machines utilizing electrocompacted and aligned collagen scaffolds [abstract]. In: Proceedings of the 10th World Biomaterials Congress; 2016 May 17–22; Montreal, QC, Canada; 2016. link1

[129] Armani D, Liu C, Aluru N. Re-configurable fluid circuits by PDMS elastomer micromachining. In: Proceedings of the Twelfth IEEE International Conference on Micro Electro Mechanical Systems; 1999 Jan 17–21; Orlando, FL, USA. New York: IEEE; 1999. p. 222–7. link1

[130] Fuard D, Tzvetkova-Chevolleau T, Decossas S, Tracqui P, Schiavone P. Optimization of polydimethylsiloxane (PDMS) substrates for studying cellular adhesion and motility. Microelectron Eng 2008;85(5–6): 1289–93. link1

[131] Chan V, Jeong JH, Bajaj P, Collens M, Saif T, Kong H, et al. Multi-material bio- fabrication of hydrogel cantilevers and actuators with stereolithography. Lab Chip 2012;12(1):88–98. link1

[132] Stanton MM, Trichet-Paredes C, Sánchez S. Applications of three-dimensional (3D) printing for microswimmers and bio-hybrid robotics. Lab Chip 2015;15 (7):1634–7. link1

[133] Chan V, Collens MB, Jeong JH, Park K, Kong H, Bashir R. Directed cell growth and alignment on protein-patterned 3D hydrogels with stereolithography. Virtual Phys Prototyp 2012;7(3):219–28. link1

[134] Sasaki J, Asoh TA, Matsumoto T, Egusa H, Sohmura T, Alsberg E, et al. Fabrication of three-dimensional cell constructs using temperature- responsive hydrogel. Tissue Eng Part A 2010;16(8):2497–504. link1

[135] Fedorovich NE, Kuipers E, Gawlitta D, Dhert WJA, Alblas J. Scaffold porosity and oxygenation of printed hydrogel constructs affect functionality of embedded osteogenic progenitors. Tissue Eng Part A 2011;17(19–20):2473–86. link1

[136] Lu L, Mende M, Yang X, Körber HF, Schnittler HJ, Weinert S, et al. Design and validation of a bioreactor for simulating the cardiac niche: a system incorporating cyclic stretch, electrical stimulation, and constant perfusion. Tissue Eng Part A 2013;19(3–4):403–14. link1

[137] Lisy O, Redfield MM, Jovanovic S, Jougasaki M, Jovanovic A, Leskinen H, et al. Mechanical unloading versus neurohumoral stimulation on myocardial structure and endocrine function in vivo. Circulation 2000;102(3):338–43. link1

[138] Shimizu M, Miyasaka K, Miyamoto K, Asano T, Yoshinobu T, Yawo H, et al. Muscle tissue actuator driven with light-gated ion channels channelrhodopsin. Procedia CIRP 2013;5:169–74. link1

[139] Salmons S, Sréter FA. Significance of impulse activity in the transformation of skeletal muscle type. Nature 1976;263(5572):30–4. link1

[140] Yadid M, Sela G, Amiad Pavlov D, Landesberg A. Adaptive control of cardiac contraction to changes in loading: from theory of sarcomere dynamics to whole-heart function. Pflugers Arch 2011;462(1):49–60. link1

[141] Suhr J, Koratkar N, Keblinski P, Ajayan P. Viscoelasticity in carbon nanotube composites. Nat Mater 2005;4(2):134–7. link1

[142] Radisic M, Park H, Shing H, Consi T, Schoen FJ, Langer R, et al. Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc Natl Acad Sci USA 2004;101 (52):18129–34. link1

[143] Asano T, Ishizuka T, Yawo H, Morishima K. Optically controllable muscle for cell-based microdevice. In: Proceedings of 2014 International Symposium on Micro-NanoMechatronics and Human Science; 2014 Nov 10–12; Nagoya, Japan. New York: IEEE; 2014. p. 1–3. link1

[144] Frigault MM, Lacoste J, Swift JL, Brown CM. Live-cell microscopy—tips and tools. J Cell Sci 2009;122(6):753–67. link1

[145] Sinha RP, Häder DP. UV-induced DNA damage and repair: a review. Photochem Photobiol Sci 2002;1(4):225–36. link1

[146] Barolet D. Light-emitting diodes (LEDs) in dermatology. Semin Cutan Med Surg 2008;27(4):227–38. link1

[147] Moreira MC, Prado R, Campos A. Application of high brightness LEDs in the human tissue and its therapeutic response. In: Gargiulo G, editor. Applied biomedical engineering. Rijeka: InTech; 2011. p. 3–20. link1

[148] Horiguchi H, Imagawa K, Hoshino T, Akiyama Y, Morishima K. Fabrication and evaluation of reconstructed cardiac tissue and its application to bio-actuated microdevices. IEEE Trans Nanobiosci 2009;8(4):349–55. link1

[149] Chen Y, Kosmas P, Martel S. A feasibility study for microwave breast cancer detection using contrast-agent-loaded bacterial microbots. Int J Antennas Propag 2013;2:1–11. link1

[150] Martel S, Tremblay CC, Ngakeng S, Langlois G. Controlled manipulation and actuation of micro-objects with magnetotactic bacteria. Appl Phys Lett 2006;89(23):233904. link1

[151] Ma Q, Chen C, Wei S, Chen C, Wu LF, Song T. Construction and operation of a microrobot based on magnetotactic bacteria in a microfluidic chip. Biomicrofluidics 2012;6(2):024107. link1

[152] Martel S, Mohammadi M, Felfoul O, Lu Z, Pouponneau P. Flagellated magnetotactic bacteria as controlled MRI-trackable propulsion and steering systems for medical nanorobots operating in the human microvasculature. Int J Robot Res 2009;28(4):571–82. link1

[153] Zhang C, Wang W, Xi N, Wang Y, Liu L. A bio-syncretic micro-swimmer assisted by magnetism. In: Proceedings of 2015 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale; 2015 Oct 5–9; Changchun, China. New York: IEEE; 2015. p. 16–21. link1

[154] Dreyfus R, Baudry J, Roper ML, Fermigier M, Stone HA, Bibette J. Microscopic artificial swimmers. Nature 2005;437(7060):862–5. link1

[155] Kim DH, Cheang UK, Kohidai L, Byun D, Kim MJ. Artificial magnetotactic motion control of Tetrahymena pyriformis using ferromagnetic nanoparticles: a tool for fabrication of microbiorobots. Appl Phys Lett 2010;97 (17):173702. link1

Related Research