Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2018, Volume 4, Issue 6 doi: 10.1016/j.eng.2018.10.004

Ultra-Short Pulsed Laser Manufacturing and Surface Processing of Microdevices

a Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA

b Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China

c College of Electronics and Information Engineering, Sichuan University, Chengdu 610064, China

Received: 2018-04-28 Revised: 2018-08-21 Accepted: 2018-10-25 Available online: 2018-11-01

Next Previous

Abstract

Ultra-short laser pulses possess many advantages for materials processing. Ultrafast laser has a significantly low thermal effect on the areas surrounding the focal point; therefore, it is a promising tool for micro- and submicro-sized precision processing. In addition, the nonlinear multiphoton absorption phenomenon of focused ultra-short pulses provides a promising method for the fabrication of various structures on transparent material, such as glass and transparent polymers. A laser direct writing process was applied in the fabrication of high-performance three-dimensional (3D) structured multilayer microsupercapacitors (MSCs) on polymer substrates exhibiting a peak specific capacitance of 42.6 mF·cm–2 at a current density of 0.1 mA·cm–2. Furthermore, a flexible smart sensor array on a polymer substrate was fabricated for multi-flavor detection. Different surface treatments such as gold plating, reducedgraphene oxide (rGO) coating, and polyaniline (PANI) coating were accomplished for different measurement units. By applying principal component analysis (PCA), this sensing system showed a promising result for flavor detection. In addition, two-dimensional (2D) periodic metal nanostructures inside 3D glass microfluidic channels were developed by all-femtosecond-laser processing for real-time surfaceenhanced Raman spectroscopy (SERS). The processing mechanisms included laser ablation, laser reduction, and laser-induced surface nano-engineering. These works demonstrate the attractive potential of ultra-short pulsed laser for surface precision manufacturing.

Figures

Fig.1

Fig.2

Fig.3

Fig.4

Fig.5

Fig.6

Fig.7

Fig.8

References

[ 1 ] Srinivasan R, Sutcliffe E, Braren B. Ablation and etching of polymethylmethacrylate by very short (160 fs) ultraviolet (308 nm) laser pulses. Appl Phys Lett 1987;51(16):1285–7. link1

[ 2 ] Küper S, Stuke M. Femtosecond UV excimer laser ablation. Appl Phys B 1987;44(4):199–204. link1

[ 3 ] Yanik MF, Cinar H, Cinar HN, Chisholm AD, Jin Y, Ben-Yakar A. Functional regeneration after laser axotomy. Nature 2004;432(7019):822. link1

[ 4 ] Momma C, Chichkov BN, Nolte S, Von Alvensleben F, Tünnermann A, Welling H, et al. Short-pulse laser ablation of solid targets. Opt Commun 1996;129(1– 2):134–42. link1

[ 5 ] Bärsch N, Körber K, Ostendorf A, Tönshoff KH. Ablation and cutting of planar silicon devices using femtosecond laser pulses. Appl Phys A 2003;77 (2):237–42. link1

[ 6 ] Wellershoff SS, Hohlfeld J, Güdde J, Matthias E. The role of electron–phonon coupling in femtosecond laser damage of metals. Appl Phys A 1999;69(1): S99–107. link1

[ 7 ] Gattass RR, Mazur E. Femtosecond laser micromachining in transparent materials. Nat Photonics 2008;2(4):219–25. link1

[ 8 ] Sugioka K, Cheng Y. Ultrafast lasers—reliable tools for advanced materials processing. Light Sci Appl 2014;3(4):e149. link1

[ 9 ] Hu A, Rybachuk M, Lu QB, Duley WW. Direct synthesis of sp-bonded carbon chains on graphite surface by femtosecond laser irradiation. Appl Phys Lett 2007;91(13):131906. link1

[10] Zheng C, Hu A, Chen T, Oakes KD, Liu S. Femtosecond laser internal manufacturing of three-dimensional microstructure devices. Appl Phys A 2015;121(1):163–77. link1

[11] Fischer J, Wegener M. Three-dimensional optical laser lithography beyond the diffraction limit. Laser Photonics Rev 2013;7(1):22–44. link1

[12] Zhou W, Bridges D, Li R, Bai S, Ma Y, Hou T, et al. Recent progress of laser micro- and nano-manufacturing. Sci Lett J 2016;5:228. link1

[13] Küper S, Stuke M. Ablation of UV-transparent materials with femtosecond UV excimer laser pulses. Microelectro Eng 1989;9(1–4):475–80. link1

[14] Lin J, Peng Z, Liu Y, Ruiz-Zepeda F, Ye R, Samuel ELG, et al. Laser-induced porous graphene films from commercial polymers. Nat Commun 2014;5(1):5714. link1

[15] Watanabe W, Sowa S, Tamaki T, Itoh K, Nishii J. Three-dimensional waveguides fabricated in poly(methyl methacrylate) by a femtosecond laser. Jpn J Appl Phys 2006;45(29):L765–7. link1

[16] Yamasaki K, Juodkazis S, Watanabe M, Sun HB, Matsuo S, Misawa H. Recording by microexplosion and two-photon reading of three-dimensional optical memory in polymethylmethacrylate films. Appl Phys Lett 2000;76(8):1000–2. link1

[17] Sowa S, Watanabe W, Tamaki T, Nishii J, Itoh K. Symmetric waveguides in poly (methyl methacrylate) fabricated by femtosecond laser pulses. Opt Express 2006;14(1):291–7. link1

[18] Zheng C, Hu A, Li R, Bridges D, Chen T. Fabrication of embedded microball lens in PMMA with high repetition rate femtosecond fiber laser. Opt Express 2015;23(13):17584–98. link1

[19] Zheng C, Hu A, Kihm KD, Ma Q, Li R, Chen T, et al. Femtosecond laser fabrication of cavity microball lens (CMBL) inside a PMMA substrate for superwide angle imaging. Small 2015;11(25):3007–16. link1

[20] Beidaghi M, Wang C. Micro-supercapacitors based on interdigital electrodes of reduced graphene oxide and carbon nanotube composites with ultrahigh power handling performance. Adv Funct Mater 2012;22(21):4501–10. link1

[21] Cheng C, Wang S, Wu J, Yu Y, Li R, Eda S, et al. Bisphenol a sensors on polyimide fabricated by laser direct writing for onsite river water monitoring at attomolar concentration. ACS Appl Mater Interfaces 2016;8(28):17784–92. link1

[22] Deubel M, Von Freymann G, Wegener M, Pereira S, Busch K, Soukoulis CM. Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nat Mater 2004;3(7):444–7.

[23] Gittard SD, Narayan RJ. Laser direct writing of micro- and nano-scale medical devices. Expert Rev Med Devices 2010;7(3):343–56. link1

[24] In JB, Hsia B, Yoo JH, Hyun S, Carraro C, Maboudian R, et al. Facile fabrication of flexible all solid-state micro-supercapacitor by direct laser writing of porous carbon in polyimide. Carbon 2015;83:144–51. link1

[25] Luo S, Hoang PT, Liu T. Direct laser writing for creating porous graphitic structures and their use for flexible and highly sensitive sensor and sensor arrays. Carbon 2016;96:522–31. link1

[26] Cai J, Lv C, Watanabe A. Cost-effective fabrication of high-performance flexible all-solid-state carbon micro-supercapacitors by blue-violet laser direct writing and further surface treatment. J Mater Chem A Mater Energy Sustain 2016;4 (5):1671–9. link1

[27] Hou T, Zheng C, Bai S, Ma Q, Bridges D, Hu A, et al. Fabrication, characterization, and applications of microlenses. Appl Opt 2015;54(24):7366–76. link1

[28] Li RZ, Peng R, Kihm KD, Bai S, Bridges D, Tumuluri U, et al. High-rate in-plane micro-supercapacitors scribed onto photo paper using in situ femtolaserreduced graphene oxide/Au nanoparticle microelectrodes. Energy Environ Sci 2016;9(4):1458–67. link1

[29] Wang S, Yu Y, Li R, Feng G, Wu Z, Compagnini G, et al. High-performance stacked in-plane supercapacitors and supercapacitor array fabricated by femtosecond laser 3D direct writing on polyimide sheets. Electrochim Acta 2017;241:153–61. link1

[30] Tran TT, Mulchandani A. Carbon nanotubes and graphene nano field-effect transistor-based biosensors. TrAC Trends Analyt Chem 2016;79:222–32. link1

[31] Zhan B, Li C, Yang J, Huang W, Dong X. Graphene field-effect transistor and its application for electronic sensing. Small 2014;10(20):4042–65. link1

[32] Piqué A, Chrisey DB, Fitz-Gerald JM, McGill RA, Auyeung RCY, Wu HD, et al. Direct writing of electronic and sensor materials using a laser transfer technique. J Mater Res 2000;15(9):1872–5. link1

[33] Yu Y, Al Mamun KA, Shanta AS, Islam SK, McFarlane N. Vertically aligned carbon nanofibers as a cell impedance sensor. IEEE Trans NanoTechnol 2016;15(6):856–61. link1

[34] Malzahn K, Windmiller JR, Valdés-Ramírez G, Schöning MJ, Wang J. Wearable electrochemical sensors for in situ analysis in marine environments. Analyst 2011;136(14):2912–7. link1

[35] Bakker A, Huijsing JH. Micropower CMOS temperature sensor with digital output. IEEE J Solid-State Circuits 1996;31(7):933–7. link1

[36] Kuang Q, Lao C, Wang ZL, Xie Z, Zheng L. High-sensitivity humidity sensor based on a single SnO2 nanowire. J Am Chem Soc 2007;129(19):6070–1. link1

[37] Sikarwar S, Yadav B. Opto-electronic humidity sensor: a review. Sens Actuators A Phys 2015;233:54–70. link1

[38] Mukhopadhyay SC. Wearable sensors for human activity monitoring: a review. IEEE Sens J 2015;15(3):1321–30. link1

[39] Li L, Zhang J, Peng Z, Li Y, Gao C, Ji Y, et al. High-performance pseudocapacitive microsupercapacitors from laser-induced graphene. Adv Mater 2016;28 (5):838–45. link1

[40] Persaud K, Dodd G. Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature 1982;299(5881):352–5. link1

[41] Otto M, Thomas J. Model studies on multiple channel analysis of free magnesium, calcium, sodium, and potassium at physiological concentration levels with ion-selective electrodes. Anal Chem 1985;57(13):2647–51. link1

[42] Premanode B, Toumazou C. A novel, low power biosensor for real time monitoring of creatinine and urea in peritoneal dialysis. Sens Actuators B 2007;120(2):732–5. link1

[43] Lvova L, Pudi R, Galloni P, Lippolis V, Di Natale C, Lundström I, et al. Multitransduction sensing films for electronic tongue applications. Sens Actuators B 2015;207:1076–86. link1

[44] Gutés A, Ibáñez AB, Del Valle M, Céspedes F. Automated SIA e-tongue employing a voltammetric biosensor array for the simultaneous determination of glucose and ascorbic acid. Electroanalysis 2006;18(1):82–8. link1

[45] Ciosek P, Wroblewski W. Sensor arrays for liquid sensing—electronic tongue systems. Analyst 2007;132(10):963–78. link1

[46] Facure MH, Mercante LA, Mattoso LHC, Correa DS. Detection of trace levels of organophosphate pesticides using an electronic tongue based on graphene hybrid nanocomposites. Talanta 2017;167:59–66. link1

[47] Zhao Y, Yang Q, Chang Y, Qu H, Pang W, Zhang H, et al. Detection and discrimination of volatile organic compounds using a single multi-resonance mode piezotransduced silicon bulk acoustic wave resonator (PSBAR) as virtual sensor array. Sens Actuators B 2018;254:1191–9. link1

[48] Yu Y, Joshi PC, Wu J, Hu A. Laser-induced carbon base smart flexible sensor array for multi flavors detection. ACS Appl Mater Interfaces 2018 [Internet] [cited 2018 Sep 29]. Available from: https://pubs.acs.org/doi/abs/10.1021/acsami.8b12626. link1

[49] Riul Jr A, Dantas CAR, Miyazaki CM, Oliveira Jr ON. Recent advances in electronic tongues. Analyst 2010;135(10):2481–95. link1

[50] Bae Y, Kim NH, Kim M, Lee KY, Han SW. Anisotropic assembly of Ag nanoprisms. J Am Chem Soc 2008;130(16):5432–3. link1

[51] Hu A, Duley W. Surface enhanced Raman spectroscopic characterization of molecular structures in diamond-like carbon films. Chem Phys Lett 2008;450 (4–6):375–8. link1

[52] Hu A, Lu QB, Duley WW, Rybachuk M. Spectroscopic characterization of carbon chains in nanostructured tetrahedral carbon films synthesized by femtosecond pulsed laser deposition. J Chem Phys 2007;126(15):154705. link1

[53] Phan-Quang GC, Wee EHZ, Yang F, Lee HK, Phang IY, Feng X, et al. Online flowing colloidosomes for sequential multi-analyte high-throughput SERS Analysis. Angew Chem Int Ed 2017;56(20):5565–9. link1

[54] Hu A, Sanderson J, Zaidi AA, Wang C, Zhang T, Zhou Y, et al. Direct synthesis of polyyne molecules in acetone by dissociation using femtosecond laser irradiation. Carbon 2008;46(13):1823–5. link1

[55] Pallaoro A, Hoonejani MR, Braun GB, Meinhart CD, Moskovits M. Rapid identification by surface-enhanced Raman spectroscopy of cancer cells at low concentrations flowing in a microfluidic channel. ACS Nano 2015;9 (4):4328–36. link1

[56] Lu G, De Keersmaecker H, Su L, Kenens B, Rocha S, Fron E, et al. Live-cell SERS endoscopy using plasmonic nanowire waveguides. Adv Mater 2014;26 (30):5124–8. link1

[57] Yin J, Wu T, Song J, Zhang Q, Liu S, Xu R, et al. SERS-active nanoparticles for sensitive and selective detection of cadmium ion (Cd2+). Chem Mater 2011;23 (21):4756–64. link1

[58] Bai S, Lin YH, Zhang XP, Zhou WP, Chen T, Ma Y, et al. Two-step photonic reduction of controlled periodic silver nanostructures for surface-enhanced Raman spectroscopy. Plasmonics 2015;10(6):1675–85. link1

[59] Blackie EJ, Le Ru EC, Etchegoin PG. Single-molecule surface-enhanced Raman spectroscopy of nonresonant molecules. J Am Chem Soc 2009;131(40):14466–72. link1

[60] Bai S, Zhou W, Tao C, Oakes K, Hu A. Laser-processed nanostructures of metallic substrates for surface-enhanced Raman spectroscopy. Curr Nanosci 2014;10(4):486–96. link1

[61] Zhang XY, Hu A, Zhang T, Lei W, Xue XJ, Zhou Y, et al. Self-assembly of largescale and ultrathin silver nanoplate films with tunable plasmon resonance properties. ACS Nano 2011;5(11):9082–92. link1

[62] Kneipp K, Kneipp H, Manoharan R, Itzkan I, Dasari RR, Feld MS. Surfaceenhanced Raman scattering (SERS)—a new tool for single molecule detection and identification. Bioimaging 1998;6(2):104–10. link1

[63] Bai S, Zhou W, Lin Y, Zhao Y, Chen T, Hu A, et al. Ultraviolet pulsed laser interference lithography and application of periodic structured Agnanoparticle films for surface-enhanced Raman spectroscopy. J Nanopart Res 2014;16(7):2470. link1

[64] Lin D, Wu Z, Li S, Zhao W, Ma C, Wang J, et al. Large-area Au-nanoparticlefunctionalized Si nanorod arrays for spatially uniform surface-enhanced Raman spectroscopy. ACS Nano 2017;11(2):1478–87. link1

[65] Yang J, Li J, Du Z, Gong Q, Teng J, Hong M. Laser hybrid micro/nano-structuring of Si surfaces in air and its applications for SERS detection. Sci Rep 2014;4 (1):6657. link1

[66] Bai S, Serien D, Hu A, Sugioka K. 3D microfluidic surface-enhanced raman spectroscopy (SERS) chips fabricated by all-femtosecond-laser-processing for real-time sensing of toxic substances. Adv Funct Mater 2018;28(23):1706262. link1

[67] Yang S, Dai X, Stogin BB, Wong TS. Ultrasensitive surface-enhanced Raman scattering detection in common fluids. Proc Natl Acad Sci USA 2016;113 (2):268–73. link1

Related Research