Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2018, Volume 4, Issue 6 doi: 10.1016/j.eng.2018.11.001

Advances in Molecular Electronics: A Brief Review

a Center of Micro/Nano Manufacturing Technology (MNMT-Dublin), University College Dublin, Dublin D04 V1W8, Ireland

b Center of Micro/Nano Manufacturing Technology (MNMT), Tianjin University, Tianjin 300072, China

Received: 2018-07-03 Revised: 2018-10-16 Accepted: 2018-11-01 Available online: 2018-11-09

Next Previous

Abstract

The field of molecular electronics, also known as moletronics, deals with the assembly of molecular electronic components using molecules as the building blocks. It is an interdisciplinary field that includes physics, chemistry, materials science, and engineering. Moletronics mainly deals with the reduction of size of silicon components. Novel research has been performed in developing electrical-equivalent molecular components. Moletronics has established its influence in electronic and photonic applications, such as conducting polymers, photochromics, organic superconductors, electrochromics, and many more. Since there is a need to reduce the size of the silicon chip, attaining such technology at the molecular level is essential. Although the experimental verification and modeling of molecular devices present a daunting task, vital breakthroughs have been achieved in this field. This article combines an overview of various molecular components, such as molecular transistors, diodes, capacitors, wires, and insulators, with a discussion of the potential applications of different molecules suitable for such components. We emphasize future developments and provide a brief review of different achievements that have been made regarding graphene-based molecular devices.

Figures

Fig.1

Fig.2

Fig.3

Fig.4

Fig.5

Fig.6

Fig.7

Fig.8

Fig.9

Fig.10

Fig.11

Fig.12

Fig.13

Fig.14

Fig.15

Fig.16

References

[ 1 ] Marcus RA. Electron transfer reactions in chemistry: theory and experiment (nobel lecture). Rev Mod Physics 1993;65:599–610. link1

[ 2 ] Ratner M. A brief history of molecular electronics. Nat Nanotechnol 2013;8:378–81. link1

[ 3 ] Heath JR, Ratner MA. Molecular electronics. Phys Today 2003:43–9.

[ 4 ] Lee T, Wang W, Reed MA. Mechanism of electron conduction in selfassembled alkanethiol monolayer devices. Phys Rev B 2003;68:21–35. link1

[ 5 ] Metzger RM, Chen B, Höpfner U, Lakshmikantham MV, Vuillaume D, Kawai T, et al. Unimolecular electrical rectification in hexadecylquinolinium tricyanoquinodimethanide. J Am Chem Soc 1997;119:10455–66. link1

[ 6 ] McCreery RL. Molecular electronic junctions. Chem Mater 2004;16:4477–96.

[ 7 ] Yaliraki SN, Kemp M, Ratner MA. Conductance of molecular wires: influence of molecule-electrode binding. J Am Chem Soc 1999;121:3428–34. link1

[ 8 ] Landauer R. Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J Res Dev 1957;1:223–31.

[ 9 ] Maassen J, Lundstrom M. The Landauer approach to electron and phonon transport. ECS Trans 2015;69:23–36. link1

[10] Kim R, Datta S, Lundstrom MS. Influence of dimensionality on thermoelectric device performance. J Appl Phys 2009;105. link1

[11] Majumdar A. Microscale heat conduction in dielectric thin films. J Heat Transfer 1993;115(1):7–16. link1

[12] Scheidemantel TJ, Ambrosch-Draxl C, Thonhauser T, Badding JV, Sofo JO. Transport coefficients from first-principles calculations. Phys Rev B 2003;68:125210. link1

[13] Roger L, Datta S. Nonequilibrium Green’s-function method applied to doublebarrier resonant-tunneling diodes. Phys Rev B 1992;45:6670–85. link1

[14] Koswatta SO, Hasan S, Lundstrom MS, Anantram MP, Nikonov DE. Nonequilibrium Green’s function treatment of phonon scattering in carbonnanotube transistors. IEEE Trans Electron Devices 2007;54:2339–51. link1

[15] Whitesides GM, Boncheva M. Beyond molecules: self-assembly of mesoscopic and macroscopic components. Proc Natl Acad Sci 2002;99:4769–74. link1

[16] Vericat C, Vela ME, Benitez G, Carro P, Salvarezza RC. Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system. Chem Soc Rev 2010;39:1805. link1

[17] Kushmerick J. Molecular transistors scrutinized. Nature 2009;462:994–5. link1

[18] Ellenbogen JC, Love JC. Architectures for molecular electronic computers: 1. Logic structures and an adder designed from molecular electronic diodes. Proc IEEE 2000;88:386–426. link1

[19] Yu H, Luo Y, Beverly K, Stoddart JF, Tseng HR, Heath JR. The moleculeelectrode interface in single-molecule transistors. Angew Chem 2003;42:5706–11. link1

[20] Ghosh AW, Rakshit T, Datta S. Gating of a molecular transistor: electrostatic and conformational. Nano Lett 2004;4:565–8. link1

[21] Ahn CH, Bhattacharya A, Di Ventra M, Eckstein JN, Frisbie CD, Gershenson ME, et al. Electrostatic modification of novel materials. Rev Mod Phys 2006;78:1185–212. link1

[22] Jin C, Solomon GC. Controlling band alignment in molecular junctions: utilizing two-dimensional transition-metal dichalcogenides as electrodes for thermoelectric devices. J Phys Chem C 2018;122:14233–9. link1

[23] Flood AH, Stoddart JF, Steuerman DW, Heath JR. Whence molecular electronics? Science 2004;306:2055–6. link1

[24] Chen Y, Jung GY, Ohlberg DAA, Li X, Stewart DR, Jeppesen JO, et al. Nanoscale molecular-switch crossbar circuits. Nanotechnology 2003;14:462–8. link1

[25] Long B, Nikitin K, Fitzmaurice D. Assembly of an electronically switchable rotaxane on the surface of a titanium dioxide nanoparticle. J Am Chem Soc 2003;125:15490–8. link1

[26] Zhu K, Baggi G, Loeb SJ. Ring-through-ring molecular shuttling in a saturated [3]rotaxane. Nat Chem 2018;10:625–30. link1

[27] Papadopoulos TA, Grace IM, Lambert CJ. Control of electron transport through Fano resonances in molecular wires. Phys Rev B 2006;74:193306. link1

[28] Reed MA, Zhou C, Muller CJ, Burgin TP, Tour JM. Conductance of a molecular junction. Science 1997;278:252–4. link1

[29] Joachim C, Gimzewski JK, Schlittler RR, Chavy C. Electronic transparence of a single C60 molecule. Phys Rev Lett 1995;74:2102–5. link1

[30] Eigler DM, Schweizer EK. Positioning single atoms with a scanning tunneling microscope. Nature 1990;344:524–6. link1

[31] Sotthewes K, Geskin V, Heimbuch R, Kumar A, Zandvliet HJW. Research update: molecular electronics: the single-molecule switch and transistor. APL Mater 2014;2:010701. link1

[32] Joachim C, Gimzewski JK, Schlittler RR, Chavy C. Electronic transparence of a single C60 molecule. Phys Rev Lett 1995;74(11):2102–5. link1

[33] Xu B, Gonella G, Delacy BG, Dai HL. Adsorption of anionic thiols on silver nanoparticles. J Phys Chem C 2015;119(10):5454–61. link1

[34] Heinze S, Tersoff J, Martel R, Derycke V, Appenzeller J, Avouris P. Carbon nanotubes as schottky barrier transistors. Phys Rev Lett 2002;89(10):106801. link1

[35] Javey A, Guo J, Wang Q, Lundstrom M, Dai H. Ballistic carbon nanotube fieldeffect transistors. Nature 2003;424(6949):654–7. link1

[36] Ebbesen TW, Lezec HJ, Hiura H, Bennett JW, Ghaemi HF, Thio T. Electrical conductivity of individual carbon nanotubes. Nature 1996;382(6586):54–6. link1

[37] Durrani ZAK. Coulomb blockade, single-electron transistors and circuits in silicon. Physica E 2003;17:572–8. link1

[38] Averin DV, Likharev KK. Coulomb blockade of single-electron tunneling, and coherent oscillations in small tunnel junctions. J Low Temp Phys 1986;62(3–4):345–73. link1

[39] Takahashi N, Ishikuro H, Hiramoto T. Control of Coulomb blockade oscillations in silicon single electron transistors using silicon nanocrystal floating gates. Appl Phys Lett 2000;76(2):209–11. link1

[40] Ali D, Ahmed H. Coulomb blockade in a silicon tunnel junction device. Appl Phys Lett 1994;64(16):2119–20. link1

[41] Sols F, Guinea F, Neto AHC. Coulomb blockade in graphene nanoribbons. Phys Rev Lett 2007;166803:25–7. link1

[42] Liang W, Shores MP, Bockrath M, Long JR, Park H. Kondo resonance in a single-molecule transistor. Nature 2002;417(6890):725–8. link1

[43] Mitchell AK, Pedersen KGL, Hedegård P, Paaske J. Kondo blockade due to quantum interference in single-molecule junctions. Nat Commun 2017;8:15210. link1

[44] Park J, Pasupathy AN, Jonas I, Goldsmith JI, Chang C, Yaish Y, et al. Coulomb blockade and the Kondo effect in single-atom transistors. Nature 2002;417 (6890):722–5. link1

[45] Kouwenhoven L, Glazman L. Revival of the Kondo effect. Phys World 2001;14 (1):33–8. link1

[46] Ke SH, Yang W, Baranger HU. Quantum-interference-controlled molecular electronics. Nano Lett 2008;8(10):3257–61. link1

[47] Stafford CA, Cardamone DM, Mazumdar S. The quantum interference effect transistor. Nanotechnology 2007;18(42):424014. link1

[48] Guédon CM, Valkenier H, Markussen T, Thygesen KS, Hummelen JC, Van Der Molen SJ. Observation of quantum interference in molecular charge transport. Nat Nanotechnol 2012;7(5):305–9. link1

[49] Chen S, Zhou W, Zhang Q, Kwok Y, Chen G, Ratner MA. Can molecular quantum interference effect transistors survive. J Phys Chem 2017;8:5166–70. link1

[50] Aviram A, Ratner MA. Molecular rectifiers. Chem Phys Lett 1974;29 (2):277–83.

[51] Roland P, Aviram A. The effect of electric fields on double-well-potential molecules. Ann New York Acad Sci 2006:339–48. link1

[52] Ng MK, Lee DC, Yu L. Molecular diodes based on conjugated diblock cooligomers. J Am Chem Soc 2002;124(40):11862–3. link1

[53] Liu R, Ke SH, Yang W, Baranger HU. Organometallic molecular rectification. J Chem Phys 2006;124(2):1–6. link1

[54] Kornilovitch PE, Bratkovsky AM, Stanley Williams R. Current rectification by molecules with asymmetric tunneling barriers. Phys Rev B Condens Matter Mater Phys 2002;66(16):1–11. link1

[55] Nijhuis CA, Reus WF, Whitesides GM. Mechanism of rectification in tunneling junctions based on molecules with asymmetric potential drops. J Am Chem Soc 2010;132(51):18386–401. link1

[56] Armstrong N, Hoft RC, McDonagh A, Cortie MB, Ford MJ. Exploring the performance of molecular rectifiers: limitations and factors affecting molecular rectification. Nano Lett 2007;7(10):3018–22. link1

[57] Metzger RM. Electrical rectification by a molecule: the advent of unimolecular electronic devices. Acc Chem Res 1999;32(11):950–7. link1

[58] Metzger RM. Quo vadis, unimolecular electronics? Nanoscale 2018;10 (22):10316–32. link1

[59] Martin AS, Sambles JR, Ashwell GJ. Molecular rectifier. Phys Rev Lett 1993;70 (2):218–21.

[60] Lenfant S, Krzeminski C, Delerue C, Allan G, Vuillaume D. Molecular rectifying diodes from self-assembly on silicon. Nano Lett 2003;3(6):741–6. link1

[61] Vilan A, Shanzer A, Cahen D. Molecular control over Au/GaAs diodes. Nature 2000;404(6774):166–8. link1

[62] Brown ER, Parker CD, Mahoney LJ, Molvar KM. Oscillations up to 712 GHz in InAs/AISb diodes. Society 1991;58:2291–3. link1

[63] Sun JP, Haddad GI, Mazumder P, Schulman JN. Resonant tunneling diodes: models and properties. Proc IEEE 1998;86(4):641–60. link1

[64] Ellenbogen JC, inventor. Monomolecular electronic device. United States patent US 6339227. 2002 Jan 15.

[65] Tsu R, inventor; Tsu R, assignee. Quantum well structures useful for semiconductor devices. United States patent US5216262A. 1993 Jun 1. link1

[66] Seminario JM, Zacarias AG, Tour JM. Theoretical study of a molecular resonant tunneling diode. J Am Chem Soc 2000;122(13):3015–20. link1

[67] Chen J, Reed MA, Rawlett AM, Tour JM. Large on-off ratios and negative differential resistance in a molecular electronic device. Science 1999;286 (5444):1550–1. link1

[68] Lake R, Alam K, Burque NA, Pandey R, inventors; The Regents of the University of California, assignee. Molecular resonant tunneling diode. United States patent US20080035913A1. 2008 Feb 14. link1

[69] Campbell I, Rubin S, Zawodzinski T, Kress J, Martin R, Smith D, et al. Controlling Schottky energy barriers in organic electronic devices using selfassembled monolayers. Phys Rev B Condens Matter 1996;54(20):R14321–4. link1

[70] Ellenbogen JC. A brief overview of nanoelectronic devices. In: Proceedings of the 1998 Government Microelectronics Applications Conference; 1998 Mar 13–16; Arlington, TX, USA; 1998.

[71] Goldhaber-Gordon D, Montemerlo MS, Love JC, Opiteck GJ, Ellenbogen JC. Overview of nanoelectronic devices. Proc IEEE 1997;85:521–40. link1

[72] Dragoman D, Dragoman M. Terahertz oscillations in semiconducting carbon nanotube resonant-tunneling diodes. Physica E 2004;24:282–9. link1

[73] Pandey RR, Bruque N, Alam K, Lake RK. Carbon nanotube—molecular resonant tunneling diode. Phys Status Solidi 2006;203(2):R5–7. link1

[74] Bayram C, Vashaei Z, Razeghi M. AlN/GaN double-barrier resonant tunneling diodes grown by metal–organic chemical vapor deposition. Appl Phys Lett 2010;96(4):2–5. link1

[75] Lindsey JS, Bocian DF. Molecules for charge-based information storage. Acc Chem Res 2011;44(8):638–50. link1

[76] Kuhr WG, Gallo AR, Manning RW, Rhodine CW. Molecular memories based on a CMOS platform. MRS Bull 2004;29(11):838–42. link1

[77] Liu Z, Yasseri AA, Lindsey JS, Bocian DF. Molecular memories that survive silicon device processing and real-world operation. Science 2003;302 (5650):1543–5. link1

[78] Roth KM, Dontha N, Dabke RB, Gryko DT, Clausen C, Lindsey JS, et al. Molecular approach toward information storage based on the redox properties of porphyrins in self-assembled monolayers. J Vac Sci Technol B 2000;18(5):2359–64. link1

[79] Jurow M, Schuckman AE, Batteas JD, Drain CM. Porphyrins as molecular electronic components of functional devices. Coord Chem Rev 2010;254 (19–20):2297–310. link1

[80] Miller JR, Simon P. Electrochemical capacitors for energy management. Science 2008;321:651–2. link1

[81] Merlet C, Rotenberg B, Madden PA, Taberna PL, Simon P, Gogotsi Y, et al. On the molecular origin of supercapacitance in nanoporous carbon electrodes. Nat Mater 2012;11(4):306–10. link1

[82] Sharma P, Bhatti TS. A review on electrochemical double-layer capacitors. Energy Convers Manage 2010;51(12):2901–12. link1

[83] Largeot C, Portet C, Chmiola J, Taberna PL, Gogotsi Y, Simon P. Relation between the ion size and pore size for an electric double-layer capacitor. J Am Chem Soc 2008;130(9):2730–1. link1

[84] Chen Z, Lee B, Sarkar S, Gowda S, Misra V. A molecular memory device formed by HfO2 encapsulation of redox-active molecules. Appl Phys Lett 2007;91:1–4. [85] Chen G, Bandow S, Margine ER, Nisoli C, Kolmogorov AN, Crespi VH, et al. Chemically doped double-walled carbon nanotubes: cylindrical molecular capacitors. Phys Rev Lett 2003;90:257403. link1

[85] Chen G, Bandow S, Margine ER, Nisoli C, Kolmogorov AN, Crespi VH, et al. Chemically doped double-walled carbon nanotubes: cylindrical molecular capacitors. Phys Rev Lett 2003;90:257403 link1

[86] Madani MS, Monajjemi M, Aghaei H. The double wall boron nitride nanotube: nano-cylindrical capacitor. Orient J Chem 2017;33(3):1213–22. link1

[87] Jansen L. Molecular theory of the dielectric constant. Phys Rev 1958;112 (2):434–44. link1

[88] Kumar MJ. Molecular diodes and applications. Recent Pat Nanotechnol 2007;1:51–7. link1

[89] Fabrizio M, Tosatti E. Nonmagnetic molecular Jahn-Teller Mott insulators. Phys Rev B Condens Matter Mater Phys 1997;55(20):13465–72. link1

[90] Mayor M, Weber HB, Reichert J, Elbing M, Von Hänisch C, Beckmann D, et al. Electric current through a molecular rod-relevance of the position of the anchor groups. Angew Chem Int Ed 2003;42(47):5834–8. link1

[91] Garner MH, Li H, Chen Y, Su TA, Shangguan Z, Paley DW, et al. Comprehensive suppression of single-molecule conductance using destructive rinterference. Nature 2018;558(7710):416–9. link1

[92] Meunier M, Quirke N. Molecular modeling of electron trapping in polymer insulators. J Chem Phys 2000;113(1):369–76. link1

[93] Wannebroucq A, Gruntz G, Suisse JM, Nicolas Y, Meunier-Prest R, Mateos M, et al. New n-type molecular semiconductor-doped insulator (MSDI) heterojunctions combining a triphenodioxazine (TPDO) and the lutetium bisphthalocyanine (LuPc2) for ammonia sensing. Sens Actuators B Chem 2018;255:1694–700. link1

[94] Tao NJ. Electron transport in molecular junctions. Nat Nanotechnol 2006;1 (3):173–81. link1

[95] Salahuddin S, Lundstrom M, Datta S. Transport effects on signal propagation in quantum wires. IEEE Trans Electron Dev 2005;52(8):1734–42. link1

[96] Tans SJ, Devoret MH, Dai H, Thess A, Smalley RE, Geerligs LJ, et al. Individual single-wall carbon nanotubes as quantum wires. Nature 1997;386 (6624):474–7. link1

[97] Wang X, Alexander-Webber JA, Jia W, Reid BPL, Stranks SD, Holmes MJ, et al. Quantum dot-like excitonic behavior in individual single walled-carbon nanotubes. Sci Rep 2016;6(1):6–11. link1

[98] Dresselhaus MS, Eklund PC. Phonons in carbon nanotubes. Adv Phys 2000;47 (6):705–814.

[99] Holmes JD, Johnston KP, Doty RC, Korgel BA. Control orientation of thickness and solution-grown nanowires silicon. Adv Sci 2010;287:1471–3.

[100] Cahill DG, Ford WK, Goodson KE, Mahan GD, Majumdar A, Maris HJ, et al. Nanoscale thermal transport. J Appl Phys 2003;93(2):793–818.

[101] Zou J, Balandin A. Phonon heat conduction in a semiconductor nanowire. J Appl Phys 2001;89(5):2932–8. link1

[102] Mingo N, Stewart DA, Broido DA, Srivastava D. Phonon transmission through defects in carbon nanotubes from first principles. Phys Rev B Condens Matter Mater Phys 2008;77(3):3–6. link1

[103] Krittayavathananon A, Ngamchuea K, Li X, Batchelor-McAuley C, Kätelhön E, Chaisiwamongkhol K, et al. Improving single-carbon-nanotube-electrode contacts using molecular electronics. J Phys Chem Lett 2017;8 (16):3908–11. link1

[104] Noori M, Sadeghi H, Lambert CJ. High-performance thermoelectricity in edgeover-edge zinc-porphyrin molecular wires. Nanoscale 2017;9(16):5299–304. link1

[105] Algethami N, Sadeghi H, Sangtarash S, Lambert CJ. The conductance of porphyrin-based molecular nanowires increases with length. Nano Lett 2018;18(7):4482–6. link1

[106] Cnossen A, Roche C, Anderson HL. Scavenger templates: a systems chemistry approach to the synthesis of porphyrin-based molecular wires. Chem Commun 2017;53(75):10410–3. link1

[107] Ratner MA, Davis B, Kemp M, Mujica V, Roitberg A, Yaliraki S. Molecular wires: charge transport, mechanisms, and control. Ann New York Acad Sci 1998;852:22–37. link1

[108] Wagner RW, Lindsey JS, Seth J, Palaniappan V, Bocian DF. Molecular optoelectronic gates. J Am Chem Soc 1996;118(16):3996–7. link1

[109] Mirkin CA, Ratner MA. Molecular electronics. Annu Rev Phys Chem 1992;43:719–54.

[110] Barbara PF, Meyer TJ, Ratner MA. Contemporary issues in electron transfer research. J Phys Chem 1996;100(31):13148–68. link1

[111] Sedghi G, Sawada K, Esdaile LJ, Hoffmann M, Anderson HL, Bethell D, et al. Single molecule conductance of porphyrin wires with ultralow attenuation. J Am Chem Soc 2008;130(27):8582–3. link1

[112] Koepf M, Trabolsi A, Elhabiri M, Wytko JA, Paul D, Albrecht-Gary AM, et al. Building blocks for self-assembled porphyrinic photonic wires. Org Lett 2005;7(7):1279–82. link1

[113] Iengo E, Zangrando E, Minatel R, Alessio E. Metallacycles of porphyrins as building blocks in the construction of higher order assemblies through axial coordination of bridging ligands: solution- and solid-state characterization of molecular sandwiches and molecular wires. J Am Chem Soc 2002;124 (6):1003–13. link1

[114] Ambroise A, Kirmaier C, Wagner RW, Loewe RS, Bocian DF, Holten D, et al. Weakly coupled molecular photonic wires: synthesis and excited-state energy-transfer dynamics. J Org Chem 2002;67(11):3811–26. link1

[115] Robertson N, McGowan CA. A comparison of potential molecular wires as components for molecular electronics. Chem Soc Rev 2003;32(2):96–103. link1

[116] Ozawa H, Kawao M, Tanaka H, Ogawa T. Synthesis of dendron-protected porphyrin wires and preparation of a one-dimensional assembly of gold nanoparticles chemically linked to the pi-conjugated wires. Langmuir 2007;23(11):6365–71. link1

[117] Linford MR, Chidsey CED, Fenter P, Eisenberger PM. Alkyl monolayers on silicon prepared from 1-alkenes and hydrogen-terminated silicon. J Am Chem Soc 1995;117(11):3145–55. link1

[118] Hobza P, Selzle HL, Schlag EW. Structure and properties of benzenecontaining molecular clusters: nonempirical ab initio calculations and experiments. Chem Rev 1994;94(7):1767–85. link1

[119] Cooper DL, Gerratt J, Raimondi M. The electronic structure of the benzene molecule. Nature 1986;323(6090):699–701. link1

[120] Kaliginedi V, Moreno-García P, Valkenier H, Hong W, García-Suárez VM, Buiter P, et al. Correlations between molecular structure and single-junction conductance: a case study with oligo(phenylene-ethynylene)-type wires. J Am Chem Soc 2012;134(11):5262–75. link1

[121] Stapleton JJ, Harder P, Daniel TA, Reinard MD, Yao Y, Price DW, et al. Selfassembled oligo(phenylene-ethynylene) molecular electronic switch monolayers on gold: structures and chemical stability. Langmuir 2003;19 (20):8245–55. link1

[122] Grozema FC, Candeias LP, Swart M, Van Duijnen PT, Wildeman J, Hadziioanou G, et al. Theoretical and experimental studies of the opto-electronic properties of positively charged oligo(phenylene vinylene)s: effects of chain length and alkoxy substitution. J Chem Phys 2002;117(24):11366–78. link1

[123] Mishra A, Ma C, Ba P, Oligothiophenes D. Functional oligothiophenes: molecular design for multidimensional nanoarchitectures and their applications. Chem Rev 2009;109(3):1141–276. link1

[124] Linton KE, Fox MA, Pålsson LO, Bryce MR. Oligo(p-phenyleneethynylene) (OPE) molecular wires: synthesis and length dependence of photoinduced charge transfer in OPEs with triarylamine and diaryloxadiazole end groups. Chemistry 2014;21(10):3997–4007. link1

[125] Thiele C, Gerhard L, Eaton TR, Torres DM, Mayor M, Wulfhekel W, et al. STM study of oligo(phenylene-ethynylene)s. New J Phys 2015;17(5):2–10. link1

[126] Cai L, Yao Y, Yang J, Price DW, Tour JM. Chemical and potential-assisted assembly of thiolacetyl-terminated oligo(phenylene ethynylene)s on gold surfaces. Chem Mater 2002;14(7):2905–9. link1

[127] Nuzzo RG, Allara DL. Adsorption of bifunctional organic disulfides on gold surfaces. J Am Chem Soc 1983;105(13):4481–3. link1

[128] Ulman A. Formation and structure of self-assembled monolayers. Chem Rev 1996;96(4):1533–54. link1

[129] Jenny NM, Mayor M, Eaton TR. Phenyl-acetylene bond assembly: a powerful tool for the construction of nanoscale architectures. Eur J Org Chem 2011;2011(26):4965–83. link1

[130] Kushmerick JJ, Pollack SK, Yang JC, Naciri J, Holt DB, Ratner MA, et al. Understanding charge transport in molecular electronics. Ann New York Acad Sci 2003;1006(1):277–90.

[131] Kushmerick JG, Holt DB, Pollack SK, Ratner MA, Yang JC, Schull TL, et al. Effect of bond-length alternation in molecular wires. J Am Chem Soc 2002;124 (36):10654–5. link1

[132] Rosenthal I. Phthalocyanines as photodynamic sensitizers. Photochem Photobiol 1991;53(6):859–70. link1

[133] Spikes JD. Phthalocyanines as photosensitizers in biological systems and for the photodynamic therapy of tumors. Photochem Photobiol 1986;43 (6):691–9. link1

[134] Saiki T, Mori S, Ohara K, Naito T. Capacitor-like behavior of molecular crystal b-Dicc[Ni(dmit)2]. Chem Lett 2014;43(7):1119–21. link1

[135] Rodríguez-Salcedo J, Vivas-Reyes R, Zapata-Rivera J. Characterization of charge transfer mechanisms in the molecular capacitor b-DiCC[Ni(dmit)2] using TD–DFT methods. Comput Theor Chem 2017;1109:36–41.

[136] Braun E, Eichen Y, Sivan U, Ben-Yoseph G. DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 1998;391 (6669):775–8. link1

[137] Zhou YX, Johnson AT, Hone J, Smith WF. Simple fabrication of molecular circuits by shadow mask evaporation. Nano Lett 2003;3(10):1371–4. link1

[138] Fuchs JN, Goerbig MO. Introduction to the physical properties of grapheme [Internet]. 2008 [cited 2018 Oct 16]. Available from: https://www.equipes. lps.u-psud.fr/m2structure/m2pdfpracticals/2-Lecture%20on%20graphene.pdf.

[139] Dedkov Y, Voloshina E. Graphene growth and properties on metal substrates. J Phys Condens Matter 2015;27:303002. link1

[140] Georgantzinos SK, Giannopoulos GI, Anifantis NK. Numerical investigation of elastic mechanical properties of graphene structures. Mater Des 2010;31 (10):4646–54. link1

[141] Torres T. Graphene chemistry. Chem Soc Rev 2017;46(15):4385–6.

[142] Liu Y, Xie B, Zhang Z, Zheng Q, Xu Z. Mechanical properties of graphene papers. J Mech Phys Solids 2012;60(4):591–605. link1

[143] Wang G, Kim Y, Choe M, Kim TW, Lee T. A new approach for molecular electronic junctions with a multilayer graphene electrode. Adv Mater 2011;23(6):755–60. link1

[144] Liu J, Yin Z, Cao X, Zhao F, Lin A, Xie L, et al. Bulk heterojunction polymer memory devices with reduced graphene oxide as electrodes. ACS Nano 2010;4(7):3987–92. link1

[145] Di CA, Wei D, Yu G, Liu Y, Guo Y, Zhu D. Patterned graphene as source/drain electrodes for bottom-contact organic field-effect transistors. Adv Mater 2008;20(17):3289–93. link1

[146] Wang X, Zhi L, Müllen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett 2008;8(1):323–7. link1

[147] Supur M, Van Dyck C, Bergren AJ, McCreery RL. Bottom-up, robust graphene ribbon electronics in all-carbon molecular junctions. ACS Appl Mater Interfaces 2018;10(7):6090–5. link1

[148] Jeong I, Song H. Structural and charge transport properties of molecular tunneling junctions with single-layer graphene electrodes. J Korean Phys Soc 2018;72(3):394–9. link1

[149] Dou KP, Kaun CC, Zhang RQ. Selective interface transparency in graphene nanoribbon based molecular junctions. Nanoscale 2018;10(10):4861–4. link1

[150] Zhong Y, Kumar B, Oh S, Trinh MT, Wu Y, Elbert K, et al. Helical ribbons for molecular electronics. J Am Chem Soc 2014;136(22):8122–30. link1

[151] Kimouche A, Ervasti MM, Drost R, Halonen S, Harju A, Joensuu PM, et al. Ultra-narrow metallic armchair graphene nanoribbons. Nat Commun 2015;6 (1):1–6. link1

[152] Fang F. Atomic and close-to-atomic scale manufacturing—a trend in manufacturing development. Front Mech Eng 2016;4(4):325–7. link1

[153] Sharath Kumar J, Murmu NC, Kuila T. Recent trends in the graphene-based sensors for the detection of hydrogen peroxide. AIMS Mater Sci 2018;5 (3):422–66. link1

[154] Wang L, Wang L, Zhang L, Xiang D. Advance of mechanically controllable break junction for molecular electronics. Top Curr Chem 2017;375(3):1–42. link1

[155] Dubois V, Raja SN, Gehring P, Caneva S, van der Zant HSJ, Niklaus F, et al. Massively parallel fabrication of crack-defined gold break junctions featuring sub-3 nm gaps for molecular devices. Nat Commun 2018;9(1):3433. link1

[156] Vilan A, Aswal D, Cahen D. Large-area, ensemble molecular electronics: motivation and challenges. Chem Rev 2017;117(5):4248–86. link1

[157] Mishra A, Jagtap S. Moletronics. Int J Sci Eng Res 2016;7(2):25–8.

[158] Newton MD, Sutin N. Electron transfer reactions in condensed phases. Annu Rev Phys Chem 1984;35:437–80. link1

[159] Dutton PL, Prince RC, Tiede DM. Reaction center of photosynthetic bacteria. Photochem Photobiol 1978;28:939–49.

[160] Patil A, Saha D, Ganguly S. A quantum biomimetic electronic nose sensor. Sci Rep 2018;8(1):1–8. link1

[161] Dubi Y, Di Ventra M. Colloquium: heat flow and thermoelectricity in atomic and molecular junctions. Rev Mod Phys 2011;83(1):131–55. link1

[162] Cui L, Miao R, Wang K, Thompson D, Zotti LA, Cuevas JC, et al. Peltier cooling in molecular junctions. Nat Nanotechnol 2018;13(2):122–7. link1

[163] Wu Q, Sadeghi H, García-Suárez VM, Ferrer J, Lambert CJ. Thermoelectricity in vertical graphene-C60-graphene architectures. Sci Rep 2017;7:1–8. link1

[164] Gould P. Moletronics closes in on silicon. Mater Today 2005;8(7):56–60 link1

Related Research