Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2019, Volume 5, Issue 1 doi: 10.1016/j.eng.2018.11.006

Biotechnology Applications of Plant Callus Cultures

Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Mainz 55128, Germany

Received:2018-06-26 Revised:2018-07-24 Accepted: 2018-11-06 Available online:2018-11-24

Next Previous

Abstract

In ethnopharmacology, and especially in traditional Chinese medicine, medicinal plants have been used for thousands of years. Similarly, agricultural plants have been used throughout the history of mankind. The recent development of the genetic engineering of plants to produce plants with desirable features adds a new and growing dimension to humanity’s usage of plants. The biotechnology of plants has come of age and a plethora of bioengineering applications in this context have been delineated during the past few decades. Callus cultures and suspension cell cultures offer a wide range of usages in pharmacology and pharmacy (including Chinese medicine), as well as in agriculture and horticulture. This review provides a timely overview of the advancements that have been made with callus cultures in these scientific fields. Genetically modified callus cultures by gene technological techniques can be used for the synthesis of bioactive secondary metabolites and for the generation of plants with improved resistance against salt, draft, diseases, and pests. Although the full potential of callus plant culture technology has not yet been exploited, the time has come to develop and market more callus culture-based products.

Image

Fig. 1

Fig. 2

Fig. 3

References

[1]  Badea C, Basu SK. Impact of drought on plant proteome and metabolome. In: Proceedings of the UGC State Level Seminar on Emerging Trends in Contemporary Education: Implications for 21st Century; 2010 Apr 9; Howrah, India. p. 104–20.

[2]  Zhao J, Davis LC, Verpoorte R. Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 2005;23 (4):283–333. link1

[3]  Nascimento NC, Fett-Neto AG. Plant secondary metabolism and challenges in modifying its operation: an overview. Methods Mol Biol 2010;643:1–13. link1

[4]  Radman R, Bucke C, Keshavarz T. Elicitor effects on Penicillium chrysogenum morphology in submerged cultures. Biotechnol Appl Biochem 2004;40(Pt 3):229–33. link1

[5]  Fritz VA, Justen VL, Bode AM, Schuster T, Wang M. Glucosinolate enhancement in cabbage induced by jasmonic acid application. HortScience 2010;45(8):1188–91. link1

[6]  Kumar A. Plant genetic transformation and molecular markers. Jaipur: Pointer Publishers; 2010. link1

[7]  Basu SK, Dutta M, Goyal A, Bhowmik PK, Kumar J, Nandy S, et al. Is genetically modified crop the answer for the next green revolution? GM Crops 2010;1 (2):68–79. link1

[8]  Rao SR, Ravishankar GA. Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 2002;20(2):101–53. link1

[9]  Bonner J. Plant tissue cultures from a hormone point of view. Proc Natl Acad Sci USA 1936;22(6):426–30. link1

[10]  Thorpe TA. History of plant tissue culture. Mol Biotechnol 2007;37 (2):169–80. link1

[11]  Georgiev MI, Weber J, Maciuk A. Bioprocessing of plant cell cultures for mass production of targeted compounds. Appl Microbiol Biotechnol 2009;83 (5):809–23. link1

[12]  Finer JJ, Kriebel HB, Becwar MR. Initiation of embryogenic callus and suspension cultures of eastern white pine (Pinus strobus L.). Plant Cell Rep 1989;8(4):203–6. link1

[13]  Chavez VM, Litz RE, Monroy M, Moon PA, Vovides AM. Regeneration of Ceratozamia euryphyllidia (Cycadales, Gymnospermae) plants from embryogenic leaf cultures derived from mature-phase trees. Plant Cell Rep 1998;17(8):612–6. link1

[14]  Chen YC, Chang C, Chang WC. A reliable protocol for plant regeneration from callus culture of Phalaenopsis. In Vitro Cell Dev Biol: Plant 2000;36(5):420–3. link1

[15]  Burris JN, Mann DGJ, Joyce BL, Stewart CN. An improved tissue culture system for embryogenic callus production and plant regeneration in switchgrass (Panicum virgatum L.). BioEnergy Res 2009;2(4):267–74. link1

[16]  Sugimoto K, Gordon SP, Meyerowitz EM. Regeneration in plants and animals: dedifferentiation, transdifferentiation, or just differentiation? Trends Cell Biol 2011;21(4):212–8. link1

[17]  Wang XD, Nolan KE, Irwanto RR, Sheahan MB, Rose RJ. Ontogeny of embryogenic callus in Medicago truncatula: the fate of the pluripotent and totipotent stem cells. Ann Bot 2011;107(4):599–609. link1

[18]  Jiang F, Feng Z, Liu H, Zhu J. Involvement of plant stem cells or stem cell-like cells in dedifferentiation. Front Plant Sci 2015;6:1028. link1

[19]  Su YH, Zhang XS. Auxin gradients trigger de novo formation of stem cells during somatic embryogenesis. Plant Signal Behav 2009;4(7):574–6. link1

[20]  Sijacic P, Liu Z. Novel insights from live-imaging in shoot meristem development. J Integr Plant Biol 2010;52(4):393–9. link1

[21]  Ikeda M, Ohme-Takagi M. TCPs, WUSs, and WINDs: families of transcription factors that regulate shoot meristem formation, stem cell maintenance, and somatic cell differentiation. Front Plant Sci 2014;5:427. link1

[22]  Salvo SA, Hirsch CN, Buell CR, Kaeppler SM, Kaeppler HF. Whole transcriptome profiling of maize during early somatic embryogenesis reveals altered expression of stress factors and embryogenesis-related genes. PLoS ONE 2014;9(10):e111407. link1

[23]  Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 1962;15(3):473–97. link1

[24]  White PR. Potentially unlimited growth of excised plant callus in an artificial nutrient. Am J Bot 1939;26(2):59–64. link1

[25]  McCown LGB. Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Comb Proc Int Plant Propag Soc 1980;30:421–7. link1

[26]  Granatek CH, Cockerline AW. Callus formation versus differentiation of cultured barley embryos: hormonal and osmotic interactions. In Vitro 1978;14(2):212–7. link1

[27]  Lieber MM. New practical and theoretical approaches to the induction of morphogenesis from plant tumors in vitro using new types of plant growth regulators: towards constructive paradigms in agriculture and medicine. Theor Biol Forum 2013;106(1–2):73–87. link1

[28]  Perianez-Rodriguez J, Manzano C, Moreno-Risueno MA. Post-embryonic organogenesis and plant regeneration from tissues: two sides of the same coin? Front Plant Sci 2014;5:219. link1

[29]  Schell J, Koncz C, Spena A, Palme K, Walden R. Genes involved in the control of growth and differentiation in plants. Gene 1993;135(1–2):245–9. link1

[30]  Karwasara VS, Jain R, Tomar P, Dixit VK. Elicitation as yield enhancement strategy for glycyrrhizin production by cell cultures of Abrus precatorius Linn. In Vitro Cell Dev Biol: Plant 2010;46(4):354–62. link1

[31]  Staniszewska I, Krolicka A, Malinski E, Lojkowska E, Szafranek J. Elicitation of secondary metabolites in in vitro cultures of Ammi majus L. Enzyme Microb Technol 2003;33(5):565–8. link1

[32]  Nandagopal K, Halder M, Dash B, Nayak S, Jha S. Biotechnological approaches for production of anti-cancerous compounds resveratrol, podophyllotoxin and zerumbone. Curr Med Chem 2018;25(36):4693–717. link1

[33]  Tomatsu M, Mujin T, Shibamoto N, Tashiro F, Ikuta A. Production of aralin, a selective cytotoxic lectin against human transformed cells, in callus culture of Aralia elata. Planta Med 2004;70(5):469–71. link1

[34]  Hao H, Lei C, Dong Q, Shen Y, Chi J, Ye H, et al. Effects of exogenous methyl jasmonate on the biosynthesis of shikonin derivatives in callus tissues of Arnebia euchroma. Appl Biochem Biotechnol 2014;173(8):2198–210. link1

[35]  Spollansky TC, Pitta-Alvarezand SI, Giulietti AM. Effect of jasmonic acid and aluminum on production of tropane alkaloids in hairy root cultures of Brugmansia candida. Electron J Biotechnol 2000;3(1):31–2. link1

[36]  Alves MN, Sartoratto A, Trigo JR. Scopolamine in Brugmansia suaveolens (Solanaceae): defense, allocation, costs, and induced response. J Chem Ecol 2007;33(2):297–309. link1

[37]  Wiktorowska E, Dlugosz M, Janiszowska W. Significant enhancement of oleanolic acid accumulation by biotic elicitors in cell suspension cultures of Calendula officinalis L. Enzyme Microb Technol 2010;46(1):14–20. link1

[38]  Takeda R, Katoh K. Growth and sesquiterpenoid production by Calypogeia granulata inoue cells in suspension culture. Planta 1981;151(6):525–30. link1

[39]  Pi Y, Jiang K, Hou R, Gong Y, Lin J, Sun X, et al. Examination of camptothecin and 10-hydroxycamptothecin in Camptotheca acuminata plant and cell culture, and the affected yields under several cell culture treatments. Biocell 2010;34(3):139–43. link1

[40]  Chavan SP, Lokhande VH, Nitnaware KM, Nikam TD. Influence of growth regulators and elicitors on cell growth and a-tocopherol and pigment productions in cell cultures of Carthamus tinctorius L. Appl Microbiol Biotechnol 2011;89(6):1701–7. link1

[41]  Purwianingsih W, Febri S, Kusdianti. Formation flavonoid secondary metabolites in callus culture of Chrysanthemum cinerariefolium as alternative provision medicine. AIP Conf Proc 2016;1708(1):030005. link1

[42]  Szabo E, Thelen A, Petersen M. Fungal elicitor preparations and methyl jasmonate enhance rosmarinic acid accumulation in suspension cultures of Coleus blumei. Plant Cell Rep 1999;18(6):485–9. link1

[43]  Kurosaki F, Yamashita A, Arisawa M. Involvement of GTP-binding protein in the induction of phytoalexin biosynthesis in cultured carrot cells. Plant Sci 2001;161(2):273–8. link1

[44]  Putalun W, Udomsin O, Yusakul G, Juengwatanatrakul T, Sakamoto S, Tanaka H. Enhanced plumbagin production from in vitro cultures of Drosera burmanii using elicitation. Biotechnol Lett 2010;32(5):721–4. link1

[45]  O’Dowd NA, McCauley PG, Richardson DHS, Wilson G. Callus production, suspension culture and in vitro alkaloid yields of Ephedra. Plant Cell Tissue Organ Cult 1993;34(2):149–55. link1

[46]  Thoma I, Loeffler C, Sinha AK, Gupta M, Krischke M, Steffan B, et al. Cyclopentenone isoprostanes induced by reactive oxygen species trigger defense gene activation and phytoalexin accumulation in plants. Plant J 2003;34(3):363–75. link1

[47]  Jeon MH, Sung SH, Huh H, Kim YC. Ginkgolide B production in cultured cells derived from Ginkgo biloba L. leaves. Plant Cell Rep 1995;14(8):501–4. link1

[48]  Palazón J, Cusidó RM, Bonfill M, Mallol A, Moyano E, Morales C, et al. Elicitation of different Panax ginseng transformed root phenotypes for an improved ginsenoside production. Plant Physiol Biochem 2003;41(11– 12):1019–25. link1

[49]  Hu X, Neill SJ, Cai W, Tang Z. Hydrogen peroxide and jasmonic acid mediate oligogalacturonic acid-induced saponin accumulation in suspension-cultured cells of Panax ginseng. Physiol Plant 2003;118(3):414–21. link1

[50]  Hu X, Neill SJ, Cai W, Tang Z. Nitric oxide mediates elicitor-induced saponin synthesis in cell cultures of Panax ginseng. Funct Plant Biol 2003;30(8):901–7. link1

[51]  Modolo LV, Cunha FQ, Braga MR, Salgado I. Nitric oxide synthase-mediated phytoalexin accumulation in soybean cotyledons in response to the Diaporthe phaseolorum f. sp. meridionalis elicitor. Plant Physiol 2002;130(3):1288–97. link1

[52]  Hayashi H, Huang P, Inoue K. Up-regulation of soyasaponin biosynthesis by methyl jasmonate in cultured cells of Glycyrrhiza glabra. Plant Cell Physiol 2003;44(4):404–11. link1

[53]  Walker TS, Pal Bais H, Vivanco JM. Jasmonic acid-induced hypericin production in cell suspension cultures of Hypericum perforatum L. (St. John’s wort). Phytochemistry 2002;60(3):289–93. link1

[54]  Murthy HN, Kim YS, Park SY, Paek KY. Hypericins: biotechnological production from cell and organ cultures. Appl Microbiol Biotechnol 2014;98(22):9187–98. link1

[55]  Ionkova I, Sasheva P, Ionkov T, Momekov G. Linum narbonense: a new valuable tool for biotechnological production of a potent anticancer lignan Justicidine B. Pharmacogn Mag 2013;9(33):39–44. link1

[56]  Mohagheghzadeh A, Dehshahri S, Hemmati S. Accumulation of lignans by in vitro cultures of three Linum species. Z Naturforsch C 2009;64(1–2):73–6. link1

[57]  Mizukami H, Tabira Y, Ellis BE. Methyl jasmonate-induced rosmarinic acid biosynthesis in Lithospermum erythrorhizon cell suspension cultures. Plant Cell Rep 1993;12(12):706–9. link1

[58]  Yazaki K, Kunihisa M, Fujisaki T, Sato F. Geranyl diphosphate: 4- hydroxybenzoate geranyltransferase from Lithospermum erythrorhizon: cloning and characterization of a key enzyme in shikonin biosynthesis. J Biol Chem 2002;277(8):6240–6. link1

[59]  dos Santos PA, Amarante MF, Pereira AM, Bertoni B, França SC, Pessoa C, et al. Production of an antiproliferative furanoheliangolide by Lychnophora ericoides cell culture. Chem Pharm Bull (Tokyo) 2004;52(12):1433–5. link1

[60]  Bais HP, Walker TS, Schweizer HP, Vivanco JM. Root specific elicitation and antimicrobial activity of rosmarinic acid in hairy root cultures of Ocimum basilicum. Plant Physiol Biochem 2002;40(11):983–95. link1

[61]  Wu J, Lin L. Elicitor-like effects of low-energy ultrasound on plant (Panax ginseng) cells: induction of plant defense responses and secondary metabolite production. Appl Microbiol Biotechnol 2002;59(1):51–7. link1

[62]  Yaoya S, Kanho H, Mikami Y, Itani T, Umehara K, Kuroyanagi M. Umbelliferone released from hairy root cultures of Pharbitis nil treated with copper sulfate and its subsequent glucosylation. Biosci Biotechnol Biochem 2004;68(9):1837–41. link1

[63]  Ruyter CM, Akram M, Illahi I, Stöckigt J. Investigation of the alkaloid content of Rauwolfia serpentina roots from regenerated plants. Planta Med 1991;57 (4):328–30. link1

[64]  Zhou X, Wu Y, Wang X, Liu B, Xu H. Salidroside production by hairy roots of Rhodiola sachalinensis obtained after transformation with Agrobacterium rhizogenes. Biol Pharm Bull 2007;30(3):439–42. link1

[65]  Boldizsár I, Orbán N, Szucs Z, Dános B. Influence of different elicitors on the } synthesis of anthraquinone derivatives in Rubia tinctorum L. cell suspension cultures. Dyes Pigments 2008;77(1):249–57. link1

[66]  Baumert A, Gröger D, Kuzovkina IN, Reisch J. Secondary metabolites produced by callus cultures of various Ruta species. Plant Cell Tissue Organ Cult 1992;28(2):159–62. link1

[67]  Wu CF, Karioti A, Rohr D, Bilia AR, Efferth T. Production of rosmarinic acid and salvianolic acid B from callus culture of Salvia miltiorrhiza with cytotoxicity towards acute lymphoblastic leukemia cells. Food Chem 2016;201:292–7. link1

[68]  Yan Q, Hu Z, Tan RX, Wu J. Efficient production and recovery of diterpenoid tanshinones in Salvia miltiorrhiza hairy root cultures with in situ adsorption, elicitation and semi-continuous operation. J Biotechnol 2005;119(4):416–24. link1

[69]  Shi M, Kwok KW, Wu JY. Enhancement of tanshinone production in Salvia miltiorrhiza Bunge (red or Chinese sage) hairy-root culture by hyperosmotic stress and yeast elicitor. Biotechnol Appl Biochem 2007;46(Pt 4):191–6. link1

[70]  Ge X, Wu J. Induction and potentiation of diterpenoid tanshinone accumulation in Salvia miltiorrhiza hairy roots by beta-aminobutyric acid. Appl Microbiol Biotechnol 2005;68(2):183–8. link1

[71]  Liu CZ, Saxena PK. Saussurea medusa cell suspension cultures for flavonoid production. Methods Mol Biol 2009;547:53–9. link1

[72]  Jung HY, Kang SM, Kang YM, Kang MJ, Yun DJ, Bahk JD, et al. Enhanced production of scopolamine by bacterial elicitors in adventitious hairy root cultures of Scopolia parviflora. Enzyme Microb Technol 2003;33(7):987–90. link1

[73]  Sánchez-Sampedro MA, Fernández-Tárrago J, Corchete P. Yeast extract and methyl jasmonate-induced silymarin production in cell cultures of Silybum marianum (L.) Gaertn. J Biotechnol 2005;119(1):60–9. link1

[74]  Schmeda-Hirschmann G, Jordan M, Gerth A, Wilken D. Secondary metabolite content in rhizomes, callus cultures and in vitro regenerated plantlets of Solidago chilensis. Z Naturforsch C J Biosci 2005;60(1–2):5–10. link1

[75]  Tabata H. Paclitaxel production by plant-cell-culture technology. Adv Biochem Eng Biotechnol 2004;87:1–23. link1

[76]  Wang C, Wu J, Mei X. Enhancement of taxol production and excretion in taxus chinensis cell culture by fungal elicitation and medium renewal. Appl Microbiol Biotechnol 2001;55(4):404–10. link1

[77]  Wang JW, Wu JY. Nitric oxide is involved in methyl jasmonate-induced defense responses and secondary metabolism activities of Taxus cells. Plant Cell Physiol 2005;46(6):923–30. link1

[78]  Aziz A, Poinssot B, Daire X, Adrian M, Bézier A, Lambert B, et al. Laminarin elicits defense responses in grapevine and induces protection against Botrytis cinerea and Plasmopara viticola. Mol Plant Microbe Interact 2003;16 (12):1118–28. link1

[79]  Fischer R, Emans N, Schuster F, Hellwig S, Drossard J. Towards molecular farming in the future: using plant-cell-suspension cultures as bioreactors. Biotechnol Appl Biochem 1999;30(Pt 2):109–12. link1

[80]  Hussain MS, Fareed S, Ansari S, Rahman MA, Ahmad IZ, Saeed M. Current approaches toward production of secondary plant metabolites. J Pharm Bioallied Sci 2012;4(1):10–20. link1

[81]  Deshpande A, Dhadi SR, Hager EJ, Ramakrishna W. Anticancer activity of rice callus suspension culture. Phytother Res 2012;26(7):1075–81. link1

[82]  Rahman N, Dhadi SR, Deshpande A, Ramakrishna W. Rice callus suspension culture inhibits growth of cell lines of multiple cancer types and induces apoptosis in lung cancer cell line. BMC Complement Altern Med 2016;16 (1):427. link1

[83]  Aravindaram K, Yang NS. Gene gun delivery systems for cancer vaccine approaches. Methods Mol Biol 2009;542:167–78. link1

[84]  Hellwig S, Drossard J, Twyman RM, Fischer R. Plant cell cultures for the production of recombinant proteins. Nat Biotechnol 2004;22(11): 1415–22. link1

[85]  Firek S, Draper J, Owen MR, Gandecha A, Cockburn B, Whitelam GC. Secretion of a functional single-chain Fv protein in transgenic tobacco plants and cell suspension cultures. Plant Mol Biol 1993;23(4):861–70. link1

[86]  Torres E, Vaquero C, Nicholson L, Sack M, Stöger E, Drossard J, et al. Rice cell culture as an alternative production system for functional diagnostic and therapeutic antibodies. Transgenic Res 1999;8(6):441–9. link1

[87]  Kapusta J, Modelska A, Figlerowicz M, Pniewski T, Letellier M, Lisowa O, et al. A plant-derived edible vaccine against hepatitis B virus. FASEB J 1999;13 (13):1796–9. link1

[88]  Kwon JY, Jeong SH, Choi JW, Pak YY, Kim DI. Assessment of long-term cryopreservation for production of hCTLA4Ig in transgenic rice cell suspension cultures. Enzyme Microb Technol 2013;53(3):216–22. link1

[89]  De Muynck B, Navarre C, Boutry M. Production of antibodies in plants: status after twenty years. Plant Biotechnol J 2010;8(5):529–63. link1

[90]  Rines HW, Luke HH. Selection and regeneration of toxin-insensitive plants from tissue cultures of oats (Avena sativa) susceptible to Helminthosporium victoriae. Theor Appl Genet 1985;71(1):16–21. link1

[91]  Abe T, Futsuhara Y. Genotypic variability for callus formation and plant regeneration in rice (Oryza sativa L.). Theor Appl Genet 1986;72 (1):3–10. link1

[92]  Lu C, Vasil IK. Somatic embryogenesis and plant regeneration from leaf tissues of Panicum maximum Jacq. Theor Appl Genet 1981;59(5):275–80. link1

[93]  Brettell RIS, Wernicke W, Thomas E. Embryogenesis from cultured immature inflorescences of Sorghum bicolor. Protoplasma 1980;104(1–2):141–8. link1

[94]  Ahloowalia BS. Plant regeneration from callus culture in wheat. Crop Sci 1982;22(2):405–10. link1

[95]  Sears RG, Deckard EL. Tissue culture variability in wheat: callus induction and plant regeneration. Crop Sci 1982;22(3):546–50. link1

[96]  Maddock SE, Lancester VA, Risiott R, Franklin J. Plant regeneration from cultured immature embryos and inflorescences of 25 cultivars of wheat (Triticum aestivum). J Exp Bot 1983;34(7):915–26. link1

[97]  Özgen M, Türet M, Özcan S, Sancak C. Callus induction and plant regeneration from immature and mature embryos of winter durum wheat genotypes. Plant Breed 1996;115(6):455–8. link1

[98]  Özgen M, Türet M, Altınok S, Sancak C. Efficient callus induction and plant regeneration from mature embryo culture of winter wheat (Triticum aestivum L.) genotypes. Plant Cell Rep 1998;18(3–4):331–5. link1

[99]  Green CE, Phillips RL. Plant regeneration from tissue cultures of maize. Crop Sci 1975;15(3):417–21. link1

[100]  Armstrong CL, Green CE. Establishment and maintenance of friable, embryogenic maize callus and the involvement of L-proline. Planta 1985;164(2):207–14. link1

[101]  Huang XQ, Wei ZM. High-frequency plant regeneration through callus initiation from mature embryos of maize (Zea Mays L.). Plant Cell Rep 2004;22(11):793–800. link1

[102]  Novak FJ. Phenotype and cytological status of plants regenerated from callus cultures of Allium sativum L. Z Pflanzenzücht 1980;84(3):250–60. link1

[103]  Pontaroli AC, Camadro EL. Plant regeneration after long-term callus culture in clones of Asparagus officinalis L. Biocell 2005;29(3):313–7. link1

[104]  Saunders JW, Doley WP. One step shoot regeneration from callus of whole plant leaf explants of sugarbeet lines and a somaclonal variant for in vitro behavior. J Plant Physiol 1986;124(5):473–9. link1

[105]  Keller WA, Armstrong KC. Embryogenesis and plant regeneration in Brassica napus anther cultures. Can J Bot 1977;55(10):1383–8. link1

[106]  Jain RK, Chowdhury JB, Sharma DR, Friedt W. Genotypic and media effects on plant regeneration from cotyledon explant cultures of some Brassica species. Plant Cell Tissue Organ Cult 1988;14(3):197–206. link1

[107]  Barna KS, Wakhlu AK. Somatic embryogenesis and plant regeneration from callus cultures of chickpea (Cicer arietinum L.). Plant Cell Rep 1993;12 (9):521–4. link1

[108]  Kartha KK, Pahl K, Leung NL, Mroginski LA. Plant regeneration from meristems of grain legumes: soybean, cowpea, peanut, chickpea, and bean. Can J Bot 1981;59(9):1671–9. link1

[109]  Barwale UB, Kerns HR, Widholm JM. Plant regeneration from callus cultures of several soybean genotypes via embryogenesis and organogenesis. Planta 1986;167(4):473–81. link1

[110]  Wright MS, Williams MH, Pierson PE, Carnes MG. Initiation and propagation of Glycine max L. Merr.: plants from tissue-cultured epicotyls. Plant Cell Tissue Organ Cult 1987;8(1):83–90. link1

[111]  Liu JR, Cantliffe DJ. Somatic embryogenesis and plant regeneration in tissue cultures of sweet potato (Ipomea batatas Poir.). Plant Cell Rep 1984;3 (3):112–5. link1

[112]  Bhatia P, Ashwath N, Senaratna T, Midmore D. Tissue culture studies of tomato (Lycopersicon esculentum). Plant Cell Tissue Organ Cult 2004;78 (1):1–21. link1

[113]  Malmberg RL. Regeneration of whole plants from callus culture of diverse genetic lines of Pisum sativum L. Planta 1979;146(2):243–4. link1

[114]  Mathews H. Morphogenetic responses from in vitro cultured seedling explants of mung bean (Vigna radiata L. Wilczek). Plant Cell Tissue Organ Cult 1987;11(3):233–40. link1

[115]  Kackar A, Bhat SR, Chandel KPS, Malik SK. Plant regeneration via somatic embryogenesis in ginger. Plant Cell Tissue Organ Cult 1993;32(3):289–92. link1

[116]  Fitch MMM. High frequency somatic embryogenesis and plant regeneration from papaya hypocotyl callus. Plant Cell Tissue Organ Cult 1993;32 (2):205–12. link1

[117]  Karunaratne S, Periyapperuma K. Culture of immature embryos of coconut, Cocos nucifera L.: callus proliferation and somatic embryogenesis. Plant Sci 1989;62(2):247–53. link1

[118]  Nehra NS, Stushnoff C, Kartha KK. Regeneration of plants from immature leafderived callus of strawberry (Fragaria ananassa). Plant Sci 1990;66 (1):119–26. link1

[119]  Nehra NS, Kartha KK, Stushnott C, Giles KL. The influence of plant growth regulator concentrations and callus age on somaclonal variation in callus culture regenerants of strawberry. Plant Cell Tissue Organ Cult 1992;29 (3):257–68. link1

[120]  Williams DJ, McHughen A. Plant regeneration of the legume Lens culinaris Medik. (lentil) in vitro. Plant Cell Tissue Organ Cult 1986;7(2):149–53. link1

[121]  Hammerschlag FA, Bauchan G, Scorza R. Regeneration of peach plants from callus derived from immature embryos. Theor Appl Genet 1985;70 (3):248–51. link1

[122]  Heinz DJ, Mee GWP. Plant differentiation from callus tissue of Saccharum species. Crop Sci 1969;9(3):346–8. link1

[123]  Ho WJ, Vasil IK. Somatic embryogenesis in sugarcane (Saccharum officinarum L.): growth and plant regeneration from embryogenic cell suspension cultures. Ann Bot 1983;51(6):719–26. link1

[124]  Phillips GC, Collins GB. In vitro tissue culture of selected legumes and plant regeneration from callus cultures of red glover. Crop Sci 1979;19(1):59–64. link1

[125]  Gresshoff PM. In vitro culture of white glover: callus, suspension, protoplast culture, and plant regeneration. Bot Gaz 1980;141(2):157–64. link1

[126]  Yeh ML, Chang WC. Plant regeneration through somatic embryogenesis in callus culture of green bamboo (Bambusa oldhamii Munro). Theor Appl Genet 1986;73(2):161–3. link1

[127]  Mariotti D, Arcioni S. Callus culture of Coronilla varia L. (crownvetch): plant regeneration through somatic embryogenesis. Plant Cell Tissue Organ Cult 1983;2(2):103–10. link1

[128]  Brettell RIS, Ingram DS. Tissue culture in the production of novel diseaseresistant crop plants. Biol Rev Camb Philos Soc 1979;54(3):329–45. link1

[129]  van den Bulk RW. Application of cell and tissue culture and in vitro selection for disease resistance breeding—a review. Euphytica 1991;56(3):269–85. link1

[130]  Jain SM. Tissue culture-derived variation in crop improvement. Euphytica 2001;118(2):153–66. link1

[131]  Ben-Hayyim G, Goffer Y. Plantlet regeneration from a NaCl-selected salttolerant callus culture of Shamouti orange (Citrus sinensis L. Osbeck). Plant Cell Rep 1989;7(8):680–3. link1

[132]  Bower R, Birch RG. Transgenic sugarcane plants via microprojectile bombardment. Plant J 1992;2(3):409–16. link1

[133]  Gallo-Meagher M, Irvine JE. Herbicide resistant transgenic sugarcane plants containing the bar gene. Crop Sci 1996;36(5):1367–74. link1

[134]  Bahgat S, Shabban OA, El-Shihy O, Lightfoot DA, El-Shemy HA. Establishment of the regeneration system for Vicia faba L. Curr Issues Mol Biol 2009;11 (Suppl 1):i47–54. link1

[135]  Chavarriaga-Aguirre P, Brand A, Medina A, Prías M, Escobar R, Martinez J, et al. The potential of using biotechnology to improve cassava: a review. In Vitro Cell Dev Biol Plant 2016;52(5):461–78. link1

[136]  Bourgin JP, Chupeau Y, Missonier C. Plant regeneration from mesophyll protoplasts of several Nicotiana species. Physiol Plant 1979;45(2):288–92. link1

[137]  Maliga P, Sz-Breznovits A, Márton L. Streptomycin-resistant plants from callus culture of haploid tobacco. Nat New Biol 1973;244(131):29–30. link1

[138]  Hansen AJ. Systemic tobacco mosaic virus infection of a ‘‘resistant” N-genecarrying tobacco hybrid raised from infected callus culture. Virology 1974;57 (2):387–91. link1

[139]  Berlyn MB. Variation in nuclear DNA content of isonicotinic acid hydrazideresistant cell lines and mutant plants of Nicotiana tabacum. Theor Appl Genet 1982;63(1):57–63. link1

[140]  Pandey A, Misra P, Chandrashekar K, Trivedi PK. Development of AtMYB12- expressing transgenic tobacco callus culture for production of rutin with biopesticidal potential. Plant Cell Rep 2012;31(10):1867–76. link1

[141]  Davidonis GH, Hamilton RH. Plant regeneration from callus tissue of Gossypium hirsutum L. Plant Sci Lett 1983;32(1–2):89–93. link1

[142]  Shoemaker RC, Couche LJ, Galbraith DW. Characterization of somatic embryogenesis and plant regeneration in cotton (Gossypium hirsutum L.). Plant Cell Rep 1986;5(3):178–81. link1

[143]  Robinson KEP, Firoozabady E. Transformation of floriculture crops. Sci Hortic (Amsterdam Neth) 1993;55(1–2):83–99. link1

[144]  Hossain Z, Mandal AK, Datta SK, Biswas AK. Development of NaCl-tolerant line in Chrysanthemum morifolium Ramat. through shoot organogenesis of selected callus line. J Biotechnol 2007;129(4):658–67. link1

[145]  Minerva G, Kumar S. Micropropagation of Gerbera (Gerbera jamesonii Bolus). In: Lambardi M, Ozudogru EA, Jain SM, editors. Protocols for micropropagation of selected economically-important horticultural plants, methods in molecular biology. New York: Humana Press; 2013. p. 305–16. link1

[146]  Kuehnle AR, Chen FC, Sugii N. Somatic embryogenesis and plant regeneration in Anthurium andraeanum hybrids. Plant Cell Rep 1992;11(9):438–42. link1

[147]  Guo Y, Wiegert-Rininger KE, Vallejo VA, Barry CS, Warner RM. Transcriptome-enabled marker discovery and mapping of plastochronrelated genes in Petunia spp. BMC Genomics 2015;16:726. link1

[148]  Zhang J, Gai M, Li X, Li T, Sun H. Somatic embryogenesis and direct as well as indirect organogenesis in Lilium pumilum DC. Fisch., an endangered ornamental and medicinal plant. Biosci Biotechnol Biochem 2016;80 (10):1898–906. link1

[149]  Daniell H, Streatfield SJ, Wycoff K. Medical molecular farming: production of antibodies, biopharmaceuticals and edible vaccines in plants. Trends Plant Sci 2001;6(5):219–26. link1

Related Research