Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2019, Volume 5, Issue 1 doi: 10.1016/j.eng.2018.12.001

An Additive Manufacturing Approach that Enables the Field Deployment of Synthetic Biosensors

Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA

Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA

Received: 2018-05-13 Revised: 2018-09-25 Accepted: 2018-12-17 Available online: 2018-12-22

Next Previous

Abstract

The tools of synthetic biology can be used to engineer living biosensors that report the presence of analytes. Although these engineered cellular biosensors have many potential applications for deployment outside of the lab, they are genetically modified organisms (GMOs) and are often considered dangerous. Mitigating the risk of releasing GMOs into the environment while enabling their use outside a laboratory is critical. Here, we describe the development of a biosensing system consisting of a synthetic biological circuit, which is engineered in Escherichia coli that are contained within a unique 3D-printed device housing. These GMOs detect the chemical quorum signal of Pseudomonas aeruginosa, an opportunistic pathogen. Using this device, the living biosensor makes contact with a specimen of interest without ever being exposed to the environment. Cells can be visually analyzed in the field within culture tubes, or returned to the lab for further analysis. Many biosensors lack the versatility required for deployment in the field, where many diseases can go undiagnosed due to a lack of resources and equipment. Our bioassay device utilizes 3D printing to create a portable, modular, and inexpensive device for the field deployment of living biosensors.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

References

[ 1 ] Gardner TS, Cantor CR, Collins JJ. Construction of a genetic toggle switch in Escherichia coli. Nature 2000;403(6767):339–42. link1

[ 2 ] Elowitz MB, Leibler S. A synthetic oscillatory network of transcriptional regulators. Nature 2000;403(6767):335–8. link1

[ 3 ] Balagaddé FK, Song H, Ozaki J, Collins CH, Barnet M, Arnold FH, et al. A synthetic Escherichia coli predator-prey ecosystem. Mol Syst Biol 2008;4 (1):187. link1

[ 4 ] Litcofsky KD, Afeyan RB, Krom RJ, Khalil AS, Collins JJ. Iterative plug-and-play methodology for constructing and modifying synthetic gene networks. Nat Methods 2012;9(11):1077–80. link1

[ 5 ] Brenner K, Karig DK, Weiss R, Arnold FH. Engineered bidirectional communication mediates a consensus in a microbial biofilm consortium. Proc Natl Acad Sci USA 2007;104(44):17300–4. link1

[ 6 ] Tamsir A, Tabor JJ, Voigt CA. Robust multicellular computing using genetically encoded NOR gates and chemical ‘wires’. Nature 2011;469(7329):212–5. link1

[ 7 ] McDaniel LE, Bailey EG, Zimmerli A. Effect of oxygen-supply rates on growth of Escherichia coli. I. Studies in unbaffled and baffled shake flasks. Appl Microbiol 1965;13:109–14. link1

[ 8 ] Ratkowsky DA, Olley J, McMeekin TA, Ball A. Relationship between temperature and growth rate of bacterial cultures. J Bacteriol 1982;149 (1):1–5. link1

[ 9 ] Kuzma J, Besley JC. Ethics of risk analysis and regulatory review: from bio- to nanotechnology. NanoEthics 2008;2(2):149–62. link1

[10] Gregorowius D, Lindemann-Matthies P, Huppenbauer M. Ethical discourse on the use of genetically modified crops: a review of academic publications in the fields of ecology and environmental ethics. J Agric Environ Ethics 2012;25 (3):265–93. link1

[11] Kilama WL. Health research ethics in public health: trials and implementation of malaria mosquito control strategies. Acta Trop 2009;112(Suppl 1):S37–47. link1

[12] Schmidt M. Special issue: societal aspects of synthetic biology. Syst Synth Biol 2009;3(1–4):1–2. link1

[13] Kuzma J, Tanji T. Unpackaging synthetic biology: identification of oversight policy problems and options. Regul Governance 2010;4(1):92–112. link1

[14] Melchels FPW, Feijen J, Grijpma DW. A review on stereolithography and its applications in biomedical engineering. Biomaterials 2010;31(24):6121–30. link1

[15] Dimitrov D, Schreve K, De Beer N. Advances in three dimensional printing— state of the art and future perspectives. Rapid Prototyping J 2006;12 (3):136–47. link1

[16] Schubert C, Van Langeveld MC, Donoso LA. Innovations in 3D printing: a 3D overview from optics to organs. Br J Ophthalmol 2014;98(2):159–61. link1

[17] Ventola CL. Medical applications for 3D printing: current and projected uses. PT 2014;39(10):704–11. link1

[18] Gambello MJ, Iglewski BH. Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression. J Bacteriol 1991;173(9):3000–9. link1

[19] Kiratisin P, Tucker KD, Passador L. LasR, a transcriptional activator of Pseudomonas aeruginosa virulence genes, functions as a multimer. J Bacteriol 2002;184(17):4912–9. link1

[20] Schwarzer C, Fu Z, Fischer H, Machen TE. Redox-independent activation of NFjB by Pseudomonas aeruginosa pyocyanin in a cystic fibrosis airway epithelial cell line. J Biol Chem 2008;283(40):27144–53. link1

[21] Pearson JP, Pesci EC, Iglewski BH. Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J Bacteriol 1997;179(18):5756–67. link1

[22] Seed PC, Passador L, Iglewski BH. Activation of the Pseudomonas aeruginosa lasI gene by LasR and the Pseudomonas autoinducer PAI: an autoinduction regulatory hierarchy. J Bacteriol 1995;177(3):654–9. link1

[23] Lyczak JB, Cannon CL, Pier GB. Lung infections associated with cystic fibrosis. Clin Microbiol Rev 2002;15(2):194–222. link1

[24] Maciá MD, Blanquer D, Togores B, Sauleda J, Pérez JL, Oliver A. Hypermutation is a key factor in development of multiple-antimicrobial resistance in Pseudomonas aeruginosa strains causing chronic lung infections. Antimicrob Agents Chemother 2005;49(8):3382–6. link1

[25] Pier GB, Grout M, Zaidi TS, Olsen JC, Johnson LG, Yankaskas JR, et al. Role of mutant CFTR in hypersusceptibility of cystic fibrosis patients to lung infections. Science 1996;271(5245):64–7. link1

[26] Pedersen SS, Espersen F, Høiby N. Diagnosis of chronic Pseudomonas aeruginosa infection in cystic fibrosis by enzyme-linked immunosorbent assay. J Clin Microbiol 1987;25(10):1830–6. link1

[27] McCulloch E, Lucas C, Ramage G, Williams C. Improved early diagnosis of Pseudomonas aeruginosa by real-time PCR to prevent chronic colonisation in a paediatric cystic fibrosis population. J Cyst Fibros 2011;10(1):21–4. link1

[28] Pearson JP, Gray KM, Passador L, Tucker KD, Eberhard A, Iglewski BH, et al. Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc Natl Acad Sci USA 1994;91(1):197–201. link1

[29] Maniatis T, Fritsch EF, Sambrook J. Molecular cloning: a laboratory manual. 2nd ed. New York: Cold Spring Harbor Laboratory Press; 1989. link1

[30] Ausubel FM, Brent R, Kingston R, Moore DD, Seidman J, Struhl K, et al. Current protocols in molecular biology. New York: John Wiley & Sons; 1987. link1

[31] Brophy JA, Voigt CA. Principles of genetic circuit design. Nat Methods 2014;11 (5):508–20. link1

[32] Hindmarsh AC. LSODE and LSODI, two new initial value ordinary differential equation solvers. ACM-SIGNUM Newslett 1980;15(4):10–1. link1

[33] COMSOL. COMSOL multiphysics: user’s guide (version 4.3 a). Stockholm: COMSOL; 2012. link1

[34] Szykiedans K, Credo W. Mechanical properties of FDM and SLA low-cost 3-D prints. Procedia Eng 2016;136:257–62. link1

[35] Pardee K, Green AA, Ferrante T, Cameron DE, DaleyKeyser A, Yin P, et al. Paperbased synthetic gene networks. Cell 2014;159(4):940–54. link1

[36] Dubin PJ, Kolls JK. IL-23 mediates inflammatory responses to mucoid Pseudomonas aeruginosa lung infection in mice. Am J Physiol Lung Cell Mol Physiol 2007;292(2):L519–28. link1

[37] Jensen T, Pedersen SS, Garne S, Heilmann C, Høiby N, Koch C. Colistin inhalation therapy in cystic fibrosis patients with chronic Pseudomonas aeruginosa lung infection. J Antimicrob Chemother 1987;19(6):831–8. link1

[38] Ciofu O, Riis B, Pressler T, Poulsen HE, Høiby N. Occurrence of hypermutable Pseudomonas aeruginosa in cystic fibrosis patients is associated with the oxidative stress caused by chronic lung inflammation. Antimicrob Agents Chemother 2005;49(6):2276–82. link1

[39] Heeckeren A, Walenga R, Konstan MW, Bonfield T, Davis PB, Ferkol T. Excessive inflammatory response of cystic fibrosis mice to bronchopulmonary infection with Pseudomonas aeruginosa. J Clin Invest 1997;100(11):2810–5. link1

[40] Jahoor A, Patel R, Bryan A, Do C, Krier J, Watters C, et al. Peroxisome proliferator-activated receptors mediate host cell proinflammatory responses to Pseudomonas aeruginosa autoinducer. J Bacteriol 2008;190(13):4408–15. link1

[41] Kruger NJ. The Bradford method for protein quantitation. In: Walker JM, editor. Basic protein and peptide protocols. New York: Humana Press; 1994. p. 9–15. link1

[42] Swanson AB, Matev IB, de Groot G. The strength of the hand. Bull Prosthet Res 1970;10(14):145–53. link1

Related Research