Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2019, Volume 5, Issue 3 doi: 10.1016/j.eng.2019.01.011

Core Metabolic Features and Hot Origin of Bathyarchaeota

a State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
b State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Received: 2018-07-01 Revised: 2018-10-17 Accepted: 2019-01-16 Available online: 2019-04-22

Next Previous

Abstract

The archaeal phylum Bathyarchaeota comprises highly diversified subgroups and is considered to be one of the most abundant microorganisms on earth. The metabolic features and evolution of this phylum still remain largely unknown. In this article, a comparative metabolic analysis of 15 newly reconstructed and 36 published metagenomic assembled genomes (MAGs) spanning 10 subgroups was performed, revealing the core metabolic features of Bathyarchaeota—namely, protein, lipid, and benzoate degradation; glycolysis; and the Wood–Ljungdahl (WL) pathway, indicating an acetyl-CoA-centralized metabolism within this phylum. Furthermore, a partial tricarboxylic acid (TCA) cycle, acetogenesis, and sulfur-related metabolic pathways were found in specific subgroups, suggesting versatile metabolic capabilities and ecological functions of different subgroups. Intriguingly, most of the MAGs from the Bathy-21 and -22 subgroups, which are placed at the phylogenetic root of all bathyarchaeotal lineages and likely represent the ancient Bathyarchaeota types, were found in hydrothermal environments and encoded reverse gyrase, suggesting a hyperthermophilic feature. This work reveals the core metabolic features of Bathyarchaeota, and indicates a hot origin of this archaeal phylum.

SupplementaryMaterials

Figures

Fig. 1

Fig. 2

References

[ 1 ] Kubo K, Lloyd KG, Biddle JF, Amann R, Teske A, Knittel K. Archaea of the Miscellaneous Crenarchaeotal Group are abundant, diverse and widespread in marine sediments. ISME J 2012;6(10):1949–65. link1

[ 2 ] Lloyd KG, Schreiber L, Petersen DG, Kjeldsen KU, Lever MA, Steen AD, et al. Predominant Archaea in marine sediments degrade detrital proteins. Nature 2013;496(7444):215–8. link1

[ 3 ] Meng J, Xu J, Qin D, He Y, Xiao X, Wang F. Genetic and functional properties of uncultivated MCG Archaea assessed by metagenome and gene expression analyses. ISME J 2014;8(3):650–9. link1

[ 4 ] He Y, Li M, Perumal V, Feng X, Fang J, Xie J, et al. Genomic and enzymatic evidence for acetogenesis among multiple lineages of the archaeal phylum Bathyarchaeota widespread in marine sediments. Nat Microbiol 2016;1 (6):16035. link1

[ 5 ] Xiang X, Wang R, Wang H, Gong L, Man B, Xu Y. Distribution of Bathyarchaeota communities across different terrestrial settings and their potential ecological functions. Sci Rep 2017;7(1):45028. link1

[ 6 ] Fry JC, Parkes RJ, Cragg BA, Weightman AJ, Webster G. Prokaryotic biodiversity and activity in the deep subseafloor biosphere. FEMS Microbiol Ecol 2008;66 (2):181–96. link1

[ 7 ] Li Q, Wang F, Chen Z, Yin X, Xiao X. Stratified active archaeal communities in the sediments of Jiulong River estuary, China. Front Microbiol 2012;3:311. link1

[ 8 ] Zhou Z, Pan J, Wang F, Gu JD, Li M. Bathyarchaeota: globally distributed metabolic generalists in anoxic environments. FEMS Microbiol Rev 2018;42 (5):639–55. link1

[ 9 ] Lazar CS, Baker BJ, Seitz K, Hyde AS, Dick GJ, Hinrichs KU, et al. Genomic evidence for distinct carbon substrate preferences and ecological niches of Bathyarchaeota in estuarine sediments. Environ Microbiol 2016;18(4):1200–11. link1

[10] Zhang W, Ding W, Yang B, Tian R, Gu S, Luo H, et al. Genomic and transcriptomic evidence for carbohydrate consumption among microorganisms in a cold seep brine pool. Front Microbiol 2016;7:1825. link1

[11] Yu T, Wu W, Liang W, Lever MA, Hinrichs KU, Wang F. Growth of sedimentary Bathyarchaeota on lignin as an energy source. Proc Natl Acad Sci USA 2018;115(23):6022–7. link1

[12] Evans PN, Parks DH, Chadwick GL, Robbins SJ, Orphan VJ, Golding SD, et al. Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science 2015;350(6259):434–8. link1

[13] Martin WF, Sousa FL, Lane N. Energy at life’s origin. Science 2014;344 (6188):1092–3. link1

[14] Fillol M, Auguet JC, Casamayor EO, Borrego CM. Insights in the ecology and evolutionary history of the Miscellaneous Crenarchaeotic Group lineage. ISME J 2016;10(3):665–77. link1

[15] Peng Y, Leung HC, Yiu SM, Chin FY. IDBA-UD: a de novo assembler for singlecell and metagenomic sequencing data with highly uneven depth. Bioinformatics 2012;28(11):1420–8. link1

[16] Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012;9(4):357–9. link1

[17] Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics 2009;25(16):2078–9. link1

[18] Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 2015;3:e1165. link1

[19] Dick GJ, Andersson AF, Baker BJ, Simmons SL, Thomas BC, Yelton AP, et al. Community-wide analysis of microbial genome sequence signatures. Genome Biol 2009;10(8):R85. link1

[20] Albertsen M, Hugenholtz P, Skarshewski A, Nielsen KL, Tyson GW, Nielsen PH. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat Biotechnol 2013;31(6):533–8. link1

[21] Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015;25(7):1043–55. link1

[22] Anantharaman K, Brown CT, Hug LA, Sharon I, Castelle CJ, Probst AJ, et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat Commun 2016;7(1):13219. link1

[23] Dombrowski N, Seitz KW, Teske AP, Baker BJ. Genomic insights into potential interdependencies in microbial hydrocarbon and nutrient cycling in hydrothermal sediments. Microbiome 2017;5(1):106. link1

[24] Butterfield CN, Li Z, Andeer PF, Spaulding S, Thomas BC, Singh A, et al. Proteogenomic analyses indicate bacterial methylotrophy and archaeal heterotrophy are prevalent below the grass root zone. PeerJ 2016;4:e2687. link1

[25] Jungbluth SP, Glavina del Rio T. Tringe SG, Stepanauskas R, Rappé MS. Genomic comparisons of a bacterial lineage that inhabits both marine and terrestrial deep subsurface systems. PeerJ 2017;5:e3134. link1

[26] Parks DH, Rinke C, Chuvochina M, Chaumeil PA, Woodcroft BJ, Evans PN, et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol 2017;2(11):1533–42. link1

[27] Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 2007;35(21):7188–96. link1

[28] Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the nextgeneration sequencing data. Bioinformatics 2012;28(23):3150–2. link1

[29] Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 2002;30(14):3059–66. link1

[30] Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and postanalysis of large phylogenies. Bioinformatics 2014;30(9):1312–3. link1

[31] Letunic I, Bork P. Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Res 2011;39(Suppl 2):W475–8. link1

[32] Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinf 2010;11(1):119. link1

[33] Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 2000;28(1):27–30. link1

[34] Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, et al. The COG database: an updated version includes eukaryotes. BMC Bioinf 2003;4(1):41. link1

[35] Rawlings ND, Waller M, Barrett AJ, Bateman A. MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res 2014;42(D1):D503–9. link1

[36] Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 2014;42(D1):D490–5. link1

[37] Bagos PG, Tsirigos KD, Plessas SK, Liakopoulos TD, Hamodrakas SJ. Prediction of signal peptides in Archaea. Protein Eng Des Sel 2009;22(1):27–35. link1

[38] Sorek R, Zhu Y, Creevey CJ, Francino MP, Bork P, Rubin EM. Genome-wide experimental determination of barriers to horizontal gene transfer. Science 2007;318(5855):1449–52. link1

[39] Csurös M. Count: evolutionary analysis of phylogenetic profiles with parsimony and likelihood. Bioinformatics 2010;26(15):1910–2. link1

[40] Lazar CS, Biddle JF, Meador TB, Blair N, Hinrichs KU, Teske AP. Environmental controls on intragroup diversity of the uncultured benthic Archaea of the Miscellaneous Crenarchaeotal Group lineage naturally enriched in anoxic sediments of the White Oak River estuary (North Carolina, USA). Environ Microbiol 2015;17(7):2228–38. link1

[41] Wakeham SG, Lee C, Hedges JI, Hernes PJ, Peterson MJ. Molecular indicators of diagenetic status in marine organic matter. Geochim Cosmochim Acta 1997;61 (24):5363–9. link1

[42] Heuer VB, Pohlman JW, Torres ME, Elvert M, Hinrichs KU. The stable carbon isotope biogeochemistry of acetate and other dissolved carbon species in deep subseafloor sediments at the northern Cascadia Margin. Geochim Cosmochim Acta 2009;73(11):3323–36. link1

[43] Seyler LM, McGuinness LM, Kerkhof LJ. Crenarchaeal heterotrophy in salt marsh sediments. ISME J 2014;8(7):1534–43. link1

[44] Yu T, Liang Q, Niu M, Wang F. High occurrence of Bathyarchaeota (MCG) in the deep-sea sediments of South China Sea quantified using newly designed PCR primers. Environ Microbiol Rep 2017;9(4):374–82. link1

[45] Lever MA, Heuer VB, Morono Y, Masui N, Schmidt F, Alperin MJ, et al. Acetogenesis in deep subseafloor sediments of the Juan de Fuca Ridge Flank: a synthesis of geochemical, thermodynamic, and gene-based evidence. Geomicrobiol J 2010;27(2):183–211. link1

[46] Richter K, Haslbeck M, Buchner J. The heat shock response: life on the verge of death. Mol Cell 2010;40(2):253–66. link1

[47] Spang A, Caceres EF. Ettema TJG. Genomic exploration of the diversity, ecology, and evolution of the archaeal domain of life. Science 2017;357(6351):eaaf3883. link1

Related Research