Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2019, Volume 5, Issue 3 doi: 10.1016/j.eng.2019.02.004

Development of High-Pressure Multigrain X-Ray Diffraction for Exploring the Earth’s Interior

a Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China

b HPCAT, X-Ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA

c Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC 20015, USA

Received: 2018-09-03 Revised: 2018-11-19 Accepted: 2019-02-01 Available online: 2019-04-06

Next Previous

Abstract

The lower mantle makes up more than a half of our planet’s volume. Mineralogical and petrological experiments on realistic bulk compositions under high pressure–temperature (PT) conditions are essential for understanding deep mantle processes. Such high PT experiments are commonly conducted in a laser-heated diamond anvil cell, producing a multiphase assemblage consisting of 100 nm to submicron crystallite grains. The structures of these lower mantle phases often cannot be preserved upon pressure quenching; thus, in situ characterization is needed. The X-ray diffraction (XRD) pattern of such a multiphase assemblage usually displays a mixture of diffraction spots and rings as a result of the coarse grain size relative to the small X-ray beam size (3–5 μm) available at the synchrotron facilities. Severe peak overlapping from multiple phases renders the powder XRD method inadequate for indexing new phases and minor phases. Consequently, structure determination of new phases in a high PT multiphase assemblage has been extremely difficult using conventional XRD techniques. Our recent development of multigrain XRD in high-pressure research has enabled the indexation of hundreds of individual crystallite grains simultaneously through the determination of crystallographic orientations for these individual grains. Once indexation is achieved, each grain can be treated as a single crystal. The combined crystallographic information from individual grains can be used to determine the crystal structures of new phases and minor phases simultaneously in a multiphase system. With this new development, we have opened up a new area of crystallography under the high PT conditions of the deep lower mantle. This paper explains key challenges in studying multiphase systems and demonstrates the unique capabilities of high-pressure multigrain XRD through successful examples of its applications.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

References

[ 1 ] Ricolleau A, Fei Y, Cottrell E, Watson H, Deng L, Zhang L, et al. Density profile of pyrolite under the lower mantle conditions. Geophys Res Lett 2009;36(6):36. link1

[ 2 ] Irifune T, Shinmei T, McCammon CA, Miyajima N, Rubie DC, Frost DJ. Iron partitioning and density changes of pyrolite in Earth’s lower mantle. Science 2010;327(5962):193–5. link1

[ 3 ] Hirose K, Fei Y, Ma Y, Mao HK. The fate of subducted basaltic crust in the Earth’s lower mantle. Nature 1999;397(6714):53–6. link1

[ 4 ] Ohira I, Ohtani E, Sakai T, Miyahara M, Hirao N, Ohishi Y, et al. Stability of a hydrous d-phase, AlOOH–MgSiO2(OH)2, and a mechanism for water transport into the base of lower mantle. Earth Planet Sci Lett 2014;401:12–7. link1

[ 5 ] Bertka CM, Fei Y. Mineralogy of the Martian interior up to core-mantle boundary pressures. J Geophys Res Solid Earth 1997;102(B3):5251–64. link1

[ 6 ] Lavina B, Meng Y. Unraveling the complexity of iron oxides at high pressure and temperature: Synthesis of Fe5O6. Sci Adv 2015;1(5):e1400260. link1

[ 7 ] Mao HK, Bell PM. High-pressure physics: sustained static generation of 1.36 to 1.72 megabars. Science 1978;200:1145–7. link1

[ 8 ] Tateno S, Hirose K, Ohishi Y, Tatsumi Y. The structure of iron in Earth’s inner core. Science 2010;330(6002):359–61. link1

[ 9 ] Lay T. Sharpness of the D00 discontinuity beneath the Cocos Plate: implications for the perovskite to post-perovskite phase transition. Geophys Res Lett 2008;35(3):35. link1

[10] Panning M, Romanowicz B. Inferences on flow at the base of Earth’s mantle based on seismic anisotropy. Science 2004;303(5656):351–3. link1

[11] Su W, Woodward RL, Dziewonski AM. Degree 12 model of shear velocity heterogeneity in the mantle. J Geophys Res 1994;99(B4):6945–80. link1

[12] Miletich R, Allan DR, Kuhs WF. High-pressure single-crystal techniques. Rev Mineral Geochem 2000;41(1):445–519. link1

[13] Dera P, Zhuravlev K, Prakapenka V, Rivers ML, Finkelstein GJ, Grubor-Urosevic O, et al. High pressure single-crystal micro X-ray diffraction analysis with GSE_ADA/RSV software. High Press Res 2013;33(3):466–84. link1

[14] Dubrovinsky L, Boffa-Ballaran T, Glazyrin K, Kurnosov A, Frost D, Merlini M, et al. Single-crystal X-ray diffraction at megabar pressures and temperatures of thousands of degrees. High Press Res 2010;30(4):620–33. link1

[15] Frost DJ, Fei Y. Stability of phase D at high pressure and high temperature. J Geophys Res Solid Earth 1998;103(B4):7463–74. link1

[16] Murakami M, Hirose K, Kawamura K, Sata N, Ohishi Y. Post-perovskite phase transition in MgSiO3. Science 2004;304(5672):855–8. link1

[17] Oganov AR, Ono S. Theoretical and experimental evidence for a postperovskite phase of MgSiO3 in Earth’s D00 layer. Nature 2004;430(6998):445–8. link1

[18] Mao WL, Meng Y, Shen G, Prakapenka VB, Campbell AJ, Heinz DL, et al. Ironrich silicates in the Earth’s D00 layer. Proc Natl Acad Sci USA 2005;102 (28):9751–3. link1

[19] Nishi M, Irifune T, Tsuchiya J, Tange Y, Nishihara Y, Fujino K, et al. Stability of hydrous silicate at high pressures and water transport to the deep lower mantle. Nat Geosci 2014;7(3):224–7. link1

[20] Zhang W, Oganov AR, Goncharov AF, Zhu Q, Boulfelfel SE, Lyakhov AO, et al. Unexpected stable stoichiometries of sodium chlorides. Science 2013;342 (6165):1502–5. link1

[21] Hirose K, Takafuji N, Sata N, Ohishi Y. Phase transition and density of subducted MORB crust in the lower mantle. Earth Planet Sci Lett 2005;237(1– 2):239–51. link1

[22] Shen G, Mao HK. High-pressure studies with x-rays using diamond anvil cells, reports on progress in physics. Physical Society 2017;80:016101. link1

[23] Duffy TS. Synchrotron facilities and the study of the Earth’s deep interior. Rep Prog Phys 2005;68(8):1811–59. link1

[24] Mao HK, Chen B, Chen J, Li K, Lin JF, Yang W, et al. Recent advances in highpressure science and technology. Matter Radiat Extremes 2016;1(1):59–75. link1

[25] Zhang L, Meng Y, Dera P, Yang W, Mao WL, Mao HK. Single-crystal structure determination of (Mg,Fe)SiO3 postperovskite. Proc Natl Acad Sci USA 2013;110 (16):6292–5. link1

[26] Nisr C, Ribárik G, Ungár T, Vaughan GBM, Cordier P, Merkel S. High resolution three-dimensional X-ray diffraction study of dislocations in grains of MgGeO3 post-perovskite at 90 GPa. J Geophys Res 2012;117(B3):B03201. link1

[27] Schmidt S. GrainSpotter: a fast and robust polycrystalline indexing algorithm. J Appl Cryst 2014;47(1):276–84. link1

[28] Sørensen HO, Schmidt S, Wright JP, Vaughan GBM, Techert S, Garman EF, et al. Multigrain crystallography. Z Kristallogr 2012;227(1):63–78. link1

[29] Zhang L, Meng Y, Yang W, Wang L, Mao WL, Zeng QS, et al. Disproportionation of (Mg,Fe)SiO3 perovskite in Earth’s deep lower mantle. Science 2014;344 (6186):877–82. link1

[30] Zhang L, Popov D, Meng Y, Wang J, Ji C, Li B, et al. In-situ crystal structure determination of seifertite SiO2 at 129 GPa: studying a minor phase near Earth’s core-mantle boundary. Am Mineral 2016;101(1):231–4. link1

[31] Merlini M, Hanfland M, Salamat A, Petitgirard S, Müller H. The crystal structures of Mg2Fe2C4O13, with tetrahedrally coordinated carbon, and Fe13O19, synthesized at deep mantle conditions. Am Mineral 2015;100(8–9):2001–4. link1

[32] Oxford Diffraction Ltd. CrysAlis Red. Version p171.29.2 [software]; 2006.

[33] Kabsch W. XDS. Acta Crystallogr D Biol Crystallogr 2010;D66:125–32. link1

[34] Dera P. GSE-ADA data analysis program for monochromatic single crystal diffraction with area detector. Argonne: GSECARS; 2007. link1

[35] Sheldrick GM. A short history of SHELX. Acta Crystallogr A 2008;A64:112–22. link1

[36] Zhang L, Yuan H, Meng Y, Mao HK. Discovery of a hexagonal ultradense hydrous phase in (Fe,Al)OOH. Proc Natl Acad Sci USA 2018;115 (12):2908–11. link1

[37] Lundin S, Catalli K, Santillán J, Shim SH, Prakapenka VB, Kunz M, et al. Effect of Fe on the equation of state of mantle silicate perovskite over 1 Mbar. Phys Earth Planet Inter 2008;168(1–2):97–102. link1

[38] Fei Y, Zhang L, Corgne A, Watson H, Ricolleau A, Meng Y, et al. Spin transition and equations of state of (Mg,Fe)O solid solutions. Geophys Res Lett 2007;34 (17):L17307. link1

[39] Zhang L, Meng Y, Mao H. Unit cell determination of coexisting postperovskite and H-phase in (Mg,Fe)SiO3 using multigrain XRD: compositional variation across a laser heating spot at 119 GPa. Prog Earth Planet Sci 2016;3(1):13. link1

[40] Miyahara M, Sakai T, Ohtani E, Kobayashi Y, Kamada S, Kondo T, et al. Application of FIB system to ultra-high-pressure Earth science. J Mineral Petrol Sci 2008;103(2):88–93. link1

Related Research