Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2019, Volume 5, Issue 3 doi: 10.1016/j.eng.2019.02.006

Ophiolite-Hosted Diamond: A New Window for Probing Carbon Cycling in the Deep Mantle

a School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
b CARMA, Key Laboratory of Deep-Earth Dynamics of MLR, Institute of Geology, Chinese Academy of Geological Sciences, Beijing
100037, China

Received: 2018-06-23 Revised: 2019-01-12 Accepted: 2019-02-01 Available online: 2019-06-14

Next Previous

Abstract

As reported in our prior work, we have recovered microdiamonds and other unusual minerals, including pseudomorph stishovite, moissanite, qingsongite, native elements, metallic alloys, and some crustal minerals (i.e., zircon, quartz, amphibole, and rutile) from ophiolitic peridotites and chromitites. These ophiolite-hosted microdiamonds display different features than kimberlitic, metamorphic, and meteoritic diamonds in terms of isotopic values and mineral inclusions. The characteristic of their light carbon isotopic composition implies that the material source of ophiolite-hosted diamonds is surface-derived organic matter. Coesite inclusions coexisting with kyanite rimming an FeTi alloy from the Luobusa ophiolite show a polycrystalline nature and a prismatic habit, indicating their origin as a replacement of stishovite. The occurrence in kyanite and coesite with inclusions of qingsongite, a cubic boron nitride mineral, and a high-pressure polymorph of rutile (TiO2 II) point to formation pressures of 10–15 GPa at temperatures ~1300 °C, consistent with depths greater than 380 km, near the mantle transition zone (MTZ). Minerals such as moissanite, native elements, and metallic alloys in chromite grains indicate a highly reduced environment for ophiolitic peridotites and chromitites. Widespread occurrence of diamonds in ophiolitic peridotites and chromitites suggests that the oceanic mantle may be a more significant carbon reservoir than previously thought. These ophiolite-hosted diamonds have proved that surface carbon can be subducted into the deep mantle, and have provided us with a new window for probing deep carbon cycling.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

References

[ 1 ] Haggerty SE. A diamond trilogy: superplumes, supercontinents, and supernovae. Science 1999;285(5429):851–60. link1

[ 2 ] Henning T, Salama F. Carbon in the universe. Science 1998;282 (5397):2204–10. link1

[ 3 ] Coltice N, Simon L, Lécuyer C. Carbon isotope cycle and mantle structure. Geophys Res Lett 2004;31(5):325–41. link1

[ 4 ] Berner RA. The carbon cycle and carbon dioxide over Phanerozoic time: the role of land plants. Philos Trans R Soc Lond B Biol Sci 1998;353(1365):75–81. link1

[ 5 ] Sarmiento JL, Hughes TMC, Stouffer RJ, Manabe S. Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature 1998;393 (6682):245–9. link1

[ 6 ] Berner RA. The long-term carbon cycle, fossil fuels and atmospheric composition. Nature 2003;426(6964):323–6. link1

[ 7 ] Retallack GJA. A 300-million-year record of atmospheric carbon dioxide from fossil plant cuticles. Nature 2001;411(6835):287–90. link1

[ 8 ] Deines P. The carbon isotope geochemistry of mantle xenoliths. Earth Sci Rev 2002;58(3):247–8. link1

[ 9 ] Shcheka SS, Wiedenbeck M, Frost DJ, Keppler H. Carbon solubility in mantle minerals. Earth Planet Sci Lett 2006;245(3–4):730–42. link1

[10] Keppler H, Wiedenbeck M, Shcheka SS. Carbon solubility in olivine and the mode of carbon storage in the Earth’s mantle. Nature 2003;424(6947):414–6. link1

[11] Dilek Y, Yang J. Ophiolites, diamonds, and ultrahigh-pressure minerals: new discoveries and concepts on upper mantle petrogenesis. Lithosphere 2018;10 (1):3–13. link1

[12] Nestola F, Korolev N, Kopylova M, Rotiroti N, Pearson DG, Pamato MG, et al. CaSiO3 perovskite in diamond indicates the recycling of oceanic crust into the lower mantle. Nature 2018;555(7695):237–41. link1

[13] Walter MJ, Kohn SC, Araujo D, Bulanova GP, Smith CB, Gaillou E, et al. Deep mantle cycling of oceanic crust: evidence from diamonds and their mineral inclusions. Science 2011;334(6052):54–7. link1

[14] Shirey SB, Cartigny P, Frost DJ, Keshav S, Nestola F, Nimis P, et al. Diamonds and the geology of mantle carbon. Rev Mineral Geochem 2013;75 (1):355–421. link1

[15] Kopylova M, Bruce L, Ryder J. Diamonds in an Archean greenstone belt: diamond suites in unconventional rocks of Wawa, Northern Ontario (Canada). EGU Gen Assem 2010;12:EGU2010-6835. link1

[16] Yang J, Xu Z, Dobrzhinetskaya LF, Green HW, Pei X, Shi R, et al. Discovery of metamorphic diamonds in central China: an indication of a > 4000 km long zone of deep subduction resulting from multiple continental collisions. Terra Nova 2003;15(6):370–9. link1

[17] Ogasawara Y. Microdiamonds in ultrahigh-pressure metamorphic rocks. Elements 2005;1(2):91–6. link1

[18] Rozen OM, Zorin YM, Zayachkovsky AA. A find of the diamonds linked with eclogites of the Precambrian Kokchetav Massif. Doklady Akademy Nauk USSR 1972;203:674–6. Russian. link1

[19] Lewis RS, Ming T, Wacker JF, Anders E, Steel E. Interstellar diamonds in meteorites. Nature 1987;326(6109):160–2. link1

[20] Huss GR. Meteoritic nanodiamonds: messengers from the stars. Elements 2005;1(2):97–100. link1

[21] Daulton TL, Eisenhour DD, Bernatowicz TJ, Lewis RS, Buseck PR. Genesis of presolar diamonds: comparative high-resolution transmission electron microscopy study of meteoritic and terrestrial nano-diamonds. Geochim Cosmochim Acta 1996;60(23):4853–72. link1

[22] Bai W, Zhou M, Robinson PT. Possibly diamond-bearing mantle peridotites and podiform chromitites in the Luobusa and Donqiao ophiolites, Tibets. Can J Earth Sci 1993;30(8):1650–9. link1

[23] Yang J, Robinson PT, Dilek Y. Diamond-bearing ophiolites and their geological occurrence. Episodes 2015;38(4):344–64. link1

[24] Lian D, Yang J, Yildirim D, Wu W, Zhang Z, Xiong F, et al. Deep mantle origin and ultra-reducing conditions in podiform chromitite: diamond, moissanite, and other unusual minerals in podiform chromitites from the Pozanti– Karsanti ophiolite, southern Turkey. Am Mineral 2017;102(5):1101–13. link1

[25] Chen Y, Yang J, Xu Z, Tian Y, Lai S. Diamonds and other unusual minerals from peridotites of the Myitkyina ophiolite, Myanmar. J Asian Earth Sci 2018;164:179–93. link1

[26] Wu W, Yang J, Ma C, Milushi I, Lian D, Tian Y. Discovery and significance of diamonds and moissanites in chromitite within the Skenderbeu massif of the Mirdita zone ophiolite, West Albania. Acta Geol Sin 2017;91(3):882–97. link1

[27] Das S, Basu AR, Mukherjee BK. In situ peridotitic diamond in Indus ophiolite sourced from hydrocarbon fluids in the mantle transition zone. Geology 2017;45(8):755–8. link1

[28] Howell D, Griffin WL, Yang J, Gain S, Stern RA, Huang J, et al. Diamonds in ophiolites: contamination or a new diamond growth environment? Earth Planet Sci Lett 2015;430(1):284–95. link1

[29] Yang J, Robinson PT, Dilek Y. Diamonds in ophiolites. Elements 2014;10 (2):127–30. link1

[30] Zhao D, Ohtani E. Deep slab subduction and dehydration and their geodynamic consequences: evidence from seismology and mineral physics. Gondwana Res 2009;16(3):401–13. link1

[31] Fukao Y. Seismic Tomogram of the Earth’s Mantle: geodynamic implications. Science 1992;258(5082):625–30. link1

[32] Grand SP. Mantle shear structure beneath the Americas and surrounding oceans. J Geophys Res Solid Earth 1994;99(B6):11591–621. link1

[33] Masters G, Laske G, Gilbert F. Matrix autoregressive analysis of freeoscillation coupling and splitting. Geophys J R Astron Soc 2000;143 (2):478–89. link1

[34] Schmandt B, Jacobsen SD, Becker TW, Liu Z, Dueker KG. Earth’s interior. Dehydration melting at the top of the lower mantle. Science 2014;344 (6189):1265–8. link1

[35] Schulze DJ, Harte B, Page FZ, Valley JW, Channer DMD, Jaques AL. Anticorrelation between low d13C of eclogitic diamonds and high d18O of their coesite and garnet inclusions requires a subduction origin. Geology 2013;41(4):455–8. link1

[36] Burnham AD, Thomson AR, Bulanova GP, Kohn SC, Smith CB, Walter MJ. Stable isotope evidence for crustal recycling as recorded by superdeep diamonds. Earth Planet Sci Lett 2015;432:374–80. link1

[37] Cartigny P. Stable isotopes and the origin of diamond. Elements 2005;1 (2):79–84. link1

[38] Stachel T, Harris JW. Formation of diamond in the Earth’s mantle. J Phys Condens Matter 2009;21(36):364206. link1

[39] Bulanova GP, Walter MJ, Smith CB, Kohn SC, Armstrong LS, Blundy J, et al. Mineral inclusions in sublithospheric diamonds from Collier 4 kimberlite pipe, Juina, Brazil: subducted protoliths, carbonated melts and primary kimberlite magmatism. Contrib Mineral Petrol 2010;160(4):489–510. link1

[40] Gurney JJ, Helmstaedt HH, Richardson SH, Shirey SB. Diamonds through time. Econ Geol 2010;105(3):689–712. link1

[41] Yang J, Dobrzhinetskaya L, Bai W, Fang Q, Robinson PT, Zhang J, et al. Diamond-and coesite-bearing chromitites from the Luobusa ophiolite Tibet. Geology 2007;35(10):875–8. link1

[42] Dobrzhinetskaya LF, Wirth R, Yang J, Hutcheon ID, Weber PK, Green HW. High-pressure highly reduced nitrides and oxides from chromitite of a Tibetan ophiolite. Proc Natl Acad Sci USA 2009;106(46):19233–8. link1

[43] Yamamoto S, Komiya T, Hirose K, Maruyama S. Coesite and clinopyroxene exsolution lamellae in chromites: in-situ ultrahigh-pressure evidence from podiform chromitites in the Luobusa ophiolite, southern Tibet. Lithos 2009;109(3):314–22. link1

[44] Yang J, Meng F, Xu X, Robinson PT, Dilek Y, Makeyev AB, et al. Diamonds, native elements and metal alloys from chromitites of the Ray-Iz ophiolite of the Polar Urals. Gondwana Res 2015;27(2):459–85. link1

[45] Dilek Y, Furnes H. Ophiolite genesis and global tectonics: geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geol Soc Am Bull 2011;123(3/4):387–411. link1

[46] Shigley JE, Chapman J, Ellison RK. Discovery and mining of the argyle diamond deposit, Australia. Gems Gemol 2001;37(1):26–41. link1

[47] Jaques AL, O’Neill HSC, Smith CB, Moon J, Chappell BW. Diamondiferous peridotite xenoliths from the Argyle (AK1) lamproite pipe, Western Australia. Contrib Mineral Petrol 1990;104(3):255–76. link1

[48] Smit KV, Shirey SB, Wang W. Type Ib diamond formation and preservation in the West African lithospheric mantle: Re-Os age constraints from sulphide inclusions in Zimmi diamonds. Precambrian Res 2016;286:152–66. link1

[49] Thomson AR, Kohn SC, Bulanova GP, Smith CB, Araujo D, Walter MJ. Trace element composition of silicate inclusions in sub-lithospheric diamonds from the Juina-5 kimberlite: evidence for diamond growth from slab melts. Lithos 2016;265:108–24. link1

[50] Zedgenizov D, Reutsky V, Wiedenbeck M. The carbon and nitrogen isotope characteristics of Type Ib-IaA cuboid diamonds from alluvial placers in the Northeastern Siberian Platform. Minerals (Basel) 2017;7(10):1–9. link1

[51] Leung I, Guo W, Friedman I, Gleason J. Natural occurrence of silicon carbide in a diamondiferous kimberlite from Fuxian. Nature 1990;346(6282):352–4. link1

[52] Wyman DA, Ayer JA, Conceição RV, Sage RP. Mantle processes in an Archean orogen: evidence from 2.67 Ga diamond-bearing lamprophyres and xenoliths. Lithos 2006;89(3–4):300–28. link1

[53] Heaney PJ, Vicenzi EP, De S. Strange diamonds: the mysterious origins of carbonado and framesite. Elements 2005;1(2):85–9. link1

[54] Feenstra R. Diamonds are becoming more important to drilling technology. Oil Gas J 1985;83(32):131–6. link1

[55] Klug K. Core drillings with polycrystalline diamonds (PCD)—a new drilling technology without water and dust. Key Eng Mater 2003;250(16):253–6. link1

[56] Stachel T, Harris JW. The origin of cratonic diamonds—constraints from mineral inclusions. Ore Geol Rev 2008;34(1):5–32. link1

[57] Kaminsky F. Mineralogy of the lower mantle: a review of ‘‘super-deep” mineral inclusions in diamond. Earth Sci Rev 2012;110(1):127–47. link1

[58] Stachel T, Brey GP, Harris JW. Inclusions in sublithospheric diamonds: glimpses of deep Earth. Elements 2005;1(2):73–8. link1

[59] Boyd FR, Gurney JJ. Diamonds and the African lithosphere. Science 1986;232 (4749):472–7. link1

[60] Moore RO, Gurney JJ. Pyroxene solid solution in garnets included in diamond. Nature 1985;318(6046):553–5. link1

[61] Stachel T. Diamonds from the asthenosphere and the transition zone. Eur J Mineral 2001;13(5):883–92. link1

[62] Tappert R, Stachel T, Harris JW, Muehlenbachs K, Ludwig T, Brey GP. Diamonds from Jagersfontein (South Africa): messengers from the sublithospheric mantle. Contrib Mineral Petrol 2005;150(5):505–22. link1

[63] Anzolini C, Angel RJ, Merlini M, Derzsi M, Tokár K, Milani S, et al. Depth of formation of CaSiO3-walstromite included in super-deep diamonds. Lithos 2016;265:138–47. link1

[64] Liou JG, Ernst WG, Zhang RY, Tsujimori T, Jahn BM. Ultrahigh-pressure minerals and metamorphic terranes—the view from China. J Asian Earth Sci 2009;35(3):199–231. link1

[65] Schertl H, Sobolev NV. The Kokchetav Massif, Kazakhstan: ‘‘type locality” of diamond-bearing UHP metamorphic rocks. J Asian Earth Sci 2013;63: 5–38. link1

[66] Shutong X, Wen S, Yican L, Laili J, Shouyuan J, Okay AI, et al. Diamond from the Dabie Shan metamorphic rocks and its implication for tectonic setting. Science 1992;256(5053):80–2. link1

[67] Dobrzhinetskaya LF, Eide EA, Larsen RB, Sturt BA, Trønnes RG, Smith DC, et al. Microdiamond in high-grade metamorphic rocks of the Western Gneiss region, Norway. Geology 1995;23(7):597. link1

[68] Roermund HLMV, Carswell DA, Drury MR, Heijboer TC. Micro-diamonds in a megacrystic garnet-websterite pod from Bardane on the island of Fjortoft, western Norway: evidence for diamond formation in mantle rocks during deep continental subduction. Geology 2002;30(11):959–62. link1

[69] Massonne HJ. A new occurrence of microdiamonds in quartz feldspathic rocks of the Saxonian Erzgebirge, Germany, and their metamorphic evolution. Capetown: Redroof Publishing; 1999. link1

[70] Stöckhert B, Duyster J, Trepmann C, Massonne HJ. Microdiamond daughter crystals precipitated from supercritical COH + silicate fluids included in garnet, Erzgebirge, Germany. Geology 2001;29(5):391–4. link1

[71] Mposkos ED, Kostopoulos DK. Diamond, former coesite and supersilicic garnet in metasedimentary rocks from the Greek Rhodope: a new ultrahighpressure metamorphic province established. Earth Planet Sci Lett 2001;192 (4):497–506. link1

[72] Naemura K, Ikuta D, Kagi H, Odake S, Ueda T, Ohi S, et al. Diamond and other possible ultradeep evidence discovered in the orogenic spinel-garnet peridotite from the Moldanubian Zone of the Bohemian Massif, Czech Republic. Ultrahigh Pressure Metamorphism 2011;1(1):77–111. link1

[73] Perraki M, Faryad SW. First finding of microdiamond, coesite and other UHP phases in felsic granulites in the Moldanubian Zone: implications for deep subduction and a revised geodynamic model for Variscan Orogeny in the Bohemian Massif. Lithos 2014;202:157–66. link1

[74] Janák M, Froitzheim N, Yoshida K, Sasinková V, Nosko M, Kobayashi T, et al. Diamond in metasedimentary crustal rocks from Pohorje, Eastern Alps: a window to deep continental subduction. J Metamorph Geol 2015;33 (5):495–512. link1

[75] Shatsky VS, Pal’yanov YN, Sokol AG, Tomilenko AA, Sobolev NV. Diamond formation in UHP dolomite marbles and garnet-pyroxene rocks of the Kokchetav Massif, Northern Kazakhstan: natural and experimental evidence. Int Geol Rev 2005;47(10):999–1010. link1

[76] Cartigny P, Corte KD, Shatsky VS, Ader M, Paepe PD, Sobolev NV, et al. The origin and formation of metamorphic microdiamonds from the Kokchetav Massif, Kazakhstan: a nitrogen and carbon isotopic study. Chem Geol 2001;176(1–4):265–81. link1

[77] Verchovsky AB, Ott U, Begemann F. Implanted radiogenic and other noble gases in crustal diamonds from Northern Kazakhstan. Earth Planet Sci Lett 1993;120(3):87–102. link1

[78] Sumino H, Dobrzhinetskaya LF, Burgess R, Kagi H. Deep-mantle-derived noble gases in metamorphic diamonds from the Kokchetav Massif, Kazakhstan. Earth Planet Sci Lett 2011;307(3):439–49. link1

[79] Swart PK, Grady MM, Pillinger CT, Lewis RS, Anders E. Interstellar carbon in meteorites. Science 1983;220(4595):406–10. link1

[80] Bernatowicz TJ, Cowsik R, Amari S, Lewis RS. Constraints on stellar grain formation from circumstellar graphite in the Murchison Meteorite. Astrophys J 1996;472(2):760–82. link1

[81] Mccoy TJ, Dickinson TL, Lofgren GE. Partial melting of the Indarch (EH4) meteorite: a textural, chemical, and phase relations view of melting and melt migration. Meteorit Planet Sci 1999;34(5):735–46. link1

[82] Stroud RM, Chisholm MF, Heck PR, Alexander CMO, Nittler LR. Constraining the origin of meteoritic nanodiamond residues with single-atom sensitivity electron microscopy. In: Proceedings of the Workshop on Formation of the First Solids in the Solar System; 2011 Nov 7–9; Kauai, HI, USA; 2011. p. 9033. link1

[83] Hough RM, Gilmour I, Pillinger CT, Arden JW, Gilkess KWR, Yuan J, et al. Diamond and silicon carbide in impact melt rock from the Ries impact crater. Nature 1995;378(6552):41–4. link1

[84] Koeberl C, Masaitis VL, Shafranovsky GI, Gilmour I, Langenhorst F, Schrauder M. Diamonds from the Popigai impact structure, Russia. Geology 1997;25 (11):967–70. link1

[85] Hazen RM, Downs RT, Jones AP, Kah L. Carbon mineralogy and crystal chemistry. Rev Mineral Geochem 2013;75(1):7–46. link1

[86] Lewis RS, Srinivasan B, Anders E. Host phase of a strange xenon component in Allende. Science 1975;190(4221):1251–62. link1

[87] Russell SS, Arden JW, Pillinger CT. A carbon and nitrogen isotope study of diamond from primitive chondrites. Meteorit Planet Sci 1996;31 (3):343–55. link1

[88] Masaitis VL, Shafranovskii GI, Ezerskii VA, Reshetniak NB. Impact diamonds in ureilites and impactites. Meteoritika 1990;49:180–96. link1

[89] Gurov EP, Gurova EP, Rakitskaya RB. Impact diamonds in the craters of the Ukrainian Shield. Meteoritics 1995;30(5):515–6. link1

[90] Siebenschock M, Schmitt RT, Stoffler D. Impact diamonds in glass bombs from suevite of the Ries Crater, Germany: new observations. Meteorit Planet Sci 1998;33(4):145. link1

[91] Goresy AE, Gillet P, Chen M, Künstler F, Graup G, Stähle V. In situ discovery of shock-induced graphite-diamond phase transition in gneisses from the Ries Crater, Germany. Am Mineral 2001;86(5–6):611–21. link1

[92] Xu X, Yang J, Chen S, Fang Q, Bai W, Ba D. Unusual mantle mineral group from chromitite orebody Cr-11 in Luobusa ophiolite of Yarlung-Zangbo Suture Zone, Tibet. J Earth Sci-China 2009;20(2):284–302. link1

[93] Xiong F, Yang J, Paul TR, Xu X, Ba D, Li Y, et al. Diamonds and other exotic minerals recovered from peridotites of the dangqiong ophiolite, Western Yarlung-Zangbo Suture Zone, Tibet. Acta Geol Sin 2016;90(2):425–39. link1

[94] Tian Y, Yang J, Robinson PT, Xiong F, Yuan LI, Zhang Z, et al. Diamond discovered in high-Al chromitites of the sartohay ophiolite, Xinjiang Province, China. Acta Geol Sin 2015;89(2):332–40. Chinese. link1

[95] Huang Z, Yang J, Paul TR, Wang Y, Xiong F, Zhang Z, et al. The discovery of diamonds in chromitites of the Hegenshan ophiolite, Inner Mongolia, China. Acta Geol Sin 2015;89(2):341–50. Chinese. link1

[96] Xiong F, Yang J, Robinson PT, Dilek Y, Milushi I, Xu X, et al. Diamonds discovered from high-Cr podiform chromitites of Bulqiza, Eastern Mirdita ophiolite, Albania. Acta Geol Sin 2017;91(2):455–68. Chinese. link1

[97] Wu W, Yang J, Wirth R, Dilek Y, Lian D, Milushi I. Origin Of diamonds in Skenderbeu Massif, Mirdita ophiolite, Albania: implications from isotopes and inclusion compositions. In: Proceedings of the Geological Society of America 2017 Annual Meeting; 2017 Oct 22–25; Seattle, WA, USA; 2017. link1

[98] Rollinson H, Adetunji J. Mantle podiform chromitites do not form beneath mid-ocean ridges: a case study from the Moho transition zone of the Oman ophiolite. Lithos 2013;177:314–27. link1

[99] Pearce JA, Lippard SJ, Roberts S. Characteristics and tectonic significance of supra-subduction zone ophiolites. Geol Soc Lond Spec Publ 1984;16 (1):77–94. link1

[100] Dilek Y, Furnes H. Ophiolites and their origins. Elements 2014;10(2):93–100. link1

[101] Zhou M, Robinson PT, Malpas J, Li Z. Podiform chromitites in the Luobusa ophiolite (southern Tibet): implications for melt-rock interaction and chromite segregation in the upper mantle. J Petrol 1996;37(1):3–21. link1

[102] Kaiser W, Bond WL. Nitrogen, a major impurity in common type I diamond. Phys Rev 1959;115(4):857–63. link1

[103] Xu X, Cartigny P, Yang J, Dilek Y, Xiong F, Guo G. Fourier transform infrared spectroscopy data and carbon isotope characteristics of the ophiolite-hosted diamonds from the Luobusa ophiolite, Tibet, and Ray-Iz ophiolite, Polar Urals. Lithosphere 2017;10(1):156–69. link1

[104] Boyd SR, Pillinger CT, Milledge HJ, Mendelssohn MJ, Seal M. Fractionation of nitrogen isotopes in a synthetic diamond of mixed crystal habit. Nature 1988;331(6157):604–7. link1

[105] Sunagawa I. Growth and morphology of diamond crystals under stable and metastable conditions. J Cryst Growth 1990;99(1–4):1156–61. link1

[106] Lian D, Yang J, Wiedenbeck M, Dilek Y, Rocholl A, Wu W. Carbon and nitrogen isotope, and mineral inclusion studies on the diamonds from the Pozanti– Karsanti chromitite, Turkey. Contrib Mineral Petrol 2018;173(9):1–18. link1

[107] Moe KS, Yang JS, Johnson P, Xu X, Wang W. Spectroscopic analysis of microdiamonds in ophiolitic chromitite and peridotite. Lithosphere 2017;10 (1):133–41. link1

[108] Harte B. Diamond formation in the deep mantle: the record of mineral inclusions and their distribution in relation to mantle dehydration zones. Mineral Mag 2010;74(2):189–215. link1

[109] Mao HK, Chen LC, Hemley RJ, Jephcoat AP, Wu Y, Bassett WA. Stability and equation of state of CaSiO3-perovskite to 134 GPa. J Geophys Res Solid Earth 1989;94(B12):17889–94. link1

[110] Li L, Weidner DJ, Brodholt J, Alfè D, Price GD, Caracas R, et al. Elasticity of CaSiO3 perovskite at high pressure and high temperature. Phys Earth Planet Inter 2006;155(3–4):249–59. link1

[111] Komabayashi T, Hirose K, Sata N, Ohishi Y, Dubrovinsky LS. Phase transition in CaSiO3 perovskite. Earth Planet Sci Lett 2007;260(3):564–9. link1

[112] Deines P, Harris JW, Gurney JJ. Depth-related carbon isotope and nitrogen concentration variability in the mantle below the Orapa kimberlite, Botswana, Africa. Geochim Cosmochim Acta 1993;57(12):2781–96. link1

[113] Deines P. The carbon isotopic composition of diamonds: relationship to diamond shape, color, occurrence and vapor composition. Geochim Cosmochim Acta 1980;44(7):943–61. link1

[114] Kirkley MB, Gurney JJ, Otter ML, Hill SJ, Daniels LR. The application of C isotope measurements to the identification of the sources of C in diamonds: a review. Appl Geochem 1991;6(5):477–94. link1

[115] Hogberg K, Stachel T, Stern RA. Carbon and nitrogen isotope systematics in diamond: different sensitivities to isotopic fractionation or a decoupled origin? Lithos 2016;265:16–30. link1

[116] Trumbull RB, Yang J, Robinson PT, Di Pierro S, Vennemann T, Wiedenbeck M. The carbon isotope composition of natural SiC (moissanite) from the Earth’s mantle: new discoveries from ophiolites. Lithos 2009;113(3):612–20. link1

[117] Dobrzhinetskaya LF, Green HW. Experimental studies of mineralogical assemblages of metasedimentary rocks at Earth’s mantle transition zone conditions. J Metamorph Geol 2007;25(2):83–96. link1

[118] Wu Y, Xu M, Jin Z, Fei Y, Robinson PT. Experimental constraints on the formation of the Tibetan podiform chromitites. Lithos 2016;245(15):109–17. link1

[119] Mathez EA, Fogel RA, Hutcheon ID, Marshintsev VK. Carbon isotopic composition and origin of SiC from kimberlites of Yakutia, Russia. Geochim Cosmochim Acta 1995;59(4):781–91. link1

[120] Shiryaev AA, Gaillard F. Local redox buffering by carbon at low pressures and the formation of moissanite—natural SiC. Eur J Mineral 2014;26(1):53–9. link1

[121] Golubkova A, Schmidt MW, Connolly JAD. Ultra-reducing conditions in average mantle peridotites and in podiform chromitites: a thermodynamic model for moissanite (SiC) formation. Contrib Mineral Petrol 2016;171 (5):1–17. link1

[122] Schmidt MW, Gao C, Golubkova A, Rohrbach A, Connolly JA. Natural moissanite (SiC)—a low temperature mineral formed from highly fractionated ultra-reducing COH-fluids. Prog Earth Planet Sci 2014;1(1):1–14. link1

[123] Robinson PT, Trumbull RB, Schmitt A, Yang J, Li J, Zhou M, et al. The origin and significance of crustal minerals in ophiolitic chromitites and peridotites. Gondwana Res 2015;27(2):486–506. link1

[124] Yamamoto S, Komiya T, Yamamoto H, Kaneko Y, Terabayashi M, Katayama I, et al. Recycled crustal zircons from podiform chromitites in the Luobusa ophiolite, southern Tibet. Isl Arc 2013;22(1):89–103. link1

[125] Arai S. Conversion of low-pressure chromitites to ultrahigh-pressure chromitites by deep recycling: a good inference. Earth Planet Sci Lett 2013;379(1):81–7. link1

[126] Zhou M, Robinson PT, Su B, Gao J, Li J, Yang J, et al. Compositions of chromite, associated minerals, and parental magmas of podiform chromite deposits: the role of slab contamination of asthenospheric melts in suprasubduction zone environments. Gondwana Res 2014;26(1):262–83. link1

[127] Mcgowan NM, Griffin WL, González-Jiménez JM, Belousova E, Afonso JC, Shi R, et al. Tibetan chromitites: excavating the slab graveyard. Geology 2015;43 (2):179–82. link1

[128] Griffin WL, Afonso JC, Belousova EA, Gain SE, Gong X, González-Jiménez JM, et al. Mantle recycling: transition zone metamorphism of Tibetan ophiolitic peridotites and its tectonic implications. J Petrol 2016;57(4):1–30. link1

[129] Xiong F, Yang J, Robinson PT, Xu X, Liu Z, Li Y, et al. Origin of podiform chromitite, a new model based on the Luobusa ophiolite, Tibet. Gondwana Res 2015;27(2):525–42. link1

[130] Ballhaus C, Fonseca ROC, Bragagni A. Reply to comment on ultra-high pressure and ultra-reduced minerals in ophiolites may form by lightning strikes by Griffin et al., no evidence for transition ophiolite, metamorphism in the Luobusa ophiolite. Geochem Perspect Lett 2018;7:3–4. link1

[131] Griffin WL, Howell D, Gonzalez-Jimenez JM, Xiong Q, Reilly SYO. Comment on ‘‘Ultra-high pressure and ultra-reduced minerals in ophiolites may form by lightning strikes”. Geochem Perspect Lett 2018;7:1–2. link1

[132] Ballhaus C, Wirth R, Fonseca ROC, Blanchard H, Ll WP. Ultra-high pressure and ultra-reduced minerals in ophiolites may form by lightning strikes. Geochem Perspect Lett 2017;5:42–6. link1

[133] Yang JS, Trumbull R, Robinson PT, Xiong FH, Lian DY. Comment 2 on ‘‘Ultrahigh pressure and ultra-reduced minerals in ophiolites may form by lightning strikes”. Geochem Perspect Lett 2018;8:6–7. link1

[134] Bijwaard H, Spakman W, Engdahl ER. Closing the gap between regional and global travel time tomography. J Geophys Res Solid Earth 1998;103 (B12):30055–78. link1

[135] Zhao D. Global tomographic images of mantle plumes and subducting slabs: insight into deep Earth dynamics. Phys Earth Planet in 2004;146 (1):3–34. link1

[136] Torsvik TH, Burke K, Steinberger B, Webb SJ, Ashwal LD. Diamonds sampled by plumes from the core-mantle boundary. Nature 2010;466(7304):352–5. link1

[137] Burke K, Steinberger B, Torsvik TH, Smethurst MA. Plume generation zones at the margins of large low shear velocity provinces on the core–mantle boundary. Earth Planet Sci Lett 2008;265(1–2):49–60. link1

[138] Hirose K, Takafuji N, Sata N, Ohishi Y. Phase transition and density of subducted MORB crust in the lower mantle. Earth Planet Sci Lett 2005;237 (1–2):239–51. link1

[139] Irifune T, Ringwood AE. Phase transformations in subducted oceanic crust and buoyancy relationships at depths of 600–800 km in the mantle. Earth Planet Sci Lett 1993;117(1–2):101–10. link1

[140] Hirose K, Fei Y, Ma Y, Mao HK. The fate of subducted basaltic crust in the Earth’s lower mantle. Nature 1999;397(6714):53–6. link1

[141] Ono S, Ohishi Y, Isshiki M, Watanuki T. In situ X-ray observations of phase assemblages in peridotite and basalt compositions at lower mantle conditions: implications for density of subducted oceanic plate. J Geophys Res Solid Earth 2005;110(B2):1–11. link1

[142] Hu Q, Kim DY, Yang W, Yang L, Meng Y, Zhang L, et al. FeO2 and FeOOH under deep lower-mantle conditions and Earth’s oxygen-hydrogen cycles. Nature 2016;534(7606):241–4. link1

[143] Liu J, Hu Q, Young Kim D, Wu Z, Wang W, Xiao Y, et al. Hydrogen-bearing iron peroxide and the origin of ultralow-velocity zones. Nature 2017;551 (7681):494–7. link1

[144] Mao HK, Hu Q, Yang L, Liu J, Kim DY, Meng Y, et al. When water meets iron at Earth’s core-mantle boundary. Natl Sci Rev 2017;4(6):1–9. link1

[145] Reymer A, Schubert G. Phanerozoic addition rates to the continental crust and crustal growth. Tectonics 1984;3(1):63–77. link1

[146] Wood BJ, Pawley A, Frost DR. Water and carbon in the Earth’s mantle. Philos Trans Mathematl Phys Eng Sci 1996;1711(354):1495–511. link1

[147] Craig H. The geochemistry of the stable carbon isotopes. Geochim Cosmochim Acta 1953;3(2):53–92. link1

[148] Javoy M, Pineau F, Iiyama I. Experimental determination of the isotopic fractionation between gaseous CO2 and carbon dissolved in tholeiitic magma. Contrib Mineral Petrol 1978;67(1):35–9. link1

[149] Murphy DT, Collerson KD, Kamber BS. Lamproites from Gaussberg, Antarctica: possible transition zone melts of Archaean subducted sediments. J Petrol 2002;43(6):981–1001. link1

[150] Kaminsky FV, Wirth R. Iron carbide inclusions in lower-mantle diamond from Juina, Brazil. Can Mineral 2011;49(2):555–72. link1

[151] Tappert R, Stachel T, Harris JW, Muehlenbachs K, Ludwig T, Brey GP. Subducting oceanic crust: the source of deep diamonds. Geology 2005;33 (7):565–8. link1

[152] Cartigny P. Mantle-related carbonados? Geochemical insights from diamonds from the Dachine komatiite (French Guiana). Earth Planet Sci Lett 2010;296 (3):329–39. link1

[153] Furnes H, Wit MD, Dilek Y. Four billion years of ophiolites reveal secular trends in oceanic crust formation. Geosci Front 2014;5(4):571–603. link1

Related Research