Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2019, Volume 5, Issue 3 doi: 10.1016/j.eng.2019.03.001

Structural Studies on the Cu-H System under Compression

a Center for High Pressure Science & Technology Advanced Research, Shanghai 201203, China

b Centre for Science at Extreme Conditions, The University of Edinburgh, Edinburgh EH9 3FD, UK

c Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China

Received: 2018-09-03 Revised: 2019-01-04 Accepted: 2019-03-05 Available online: 2019-04-06

Next Previous

Abstract

Hydrogen chemistry at extreme pressures is currently subject to extensive research due to the observed and predicted enhanced physical properties when hydrogen is incorporated in numerous binary systems. Despite the high reactivity of hydrogen, the noble metals (Cu, Ag, and Au) display an outstanding resilience to hydride formation, with no reports of a stable compound with a hydrogen molar ratio > 1 at room temperature. Here, through extreme compression and in situ laser heating of pure copper in a hydrogen atmosphere, we explore the affinity of these elements to adopt binary compounds. We report on the phase behavior and stabilities in the Cu–H system, analyzed via synchrotron X-ray diffraction, up to pressures of 50 GPa. We confirm the existence of the previously reported γ0-CuH0.15, γ1-CuH0.5, and ε-Cu2H phases. Most notably, we report the highest hydrogen-content noble-metal hydride stable at room temperature to date: γ2-CuH0.65, which was synthesized through laser heating. This study furthers our understanding of hydrogen-transition metal chemistry and may find applicability in future hydrogen-storage applications.

Figures

Fig. 1

Fig. 2

Fig. 3

References

[ 1 ] Drozdov AP, Eremets MI, Troyan IA, Ksenofontov V, Shylin SI. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature 2015;525:73–6. link1

[ 2 ] Somayazulu MS, Finger LW, Hemley RJ, Mao H. High-pressure compounds in methane-hydrogen mixtures. Science 1996;271(5254):1400–2. link1

[ 3 ] Binns J, Dalladay-Simpson P, Wang M, Ackland GJ, Gregoryanz E, Howie RT. Formation of H2-rich iodine-hydrogen compounds at high pressure. Phys Rev B 2018;97(2):024111. link1

[ 4 ] Howie RT, Guillaume CL, Scheler T, Goncharov AF, Gregoryanz E. Mixed molecular and atomic phase of dense hydrogen. Phys Rev Lett 2012;108 (12):125501. link1

[ 5 ] Dalladay-Simpson P, Howie RT, Gregoryanz E. Evidence for a new phase of dense hydrogen above 325 gigapascals. Nature 2016;529(7584):63–7. link1

[ 6 ] Howie RT, Turnbull R, Binns J, Frost M, Dalladay-Simpson P, Gregoryanz E. Formation of xenon-nitrogen compounds at high pressure. Sci Rep 2016;6 (1):34896. link1

[ 7 ] Binns J, Dalladay-Simpson P, Wang M, Gregoryanz E, Howie RT. Enhanced reactivity of lithium and copper at high pressure. J Phys Chem Lett 2018;9 (11):3149–53. link1

[ 8 ] Li B, Ding Y, Kim DY, Ahuja R, Zou G, Mao HK. Rhodium dihydride (RhH2) with high volumetric hydrogen density. Proc Natl Acad Sci USA 2011;108 (46):18618–21. link1

[ 9 ] Kim DY, Scheicher RH, Pickard CJ, Needs RJ, Ahuja R. Predicted formation of superconducting platinum-hydride crystals under pressure in the presence of molecular hydrogen. Phys Rev Lett 2011;107(11):117002. link1

[10] Antonov VE. Phase transformations, crystal and magnetic structures of highpressure hydrides of d-metals. J Alloys Compd 2002;330–332:110–6. link1

[11] Burtovyy R, Tkacz M. High-pressure synthesis of a new copper hydride from elements. Solid State Commun 2004;131(3–4):169–73. link1

[12] Donnerer C, Scheler T, Gregoryanz E. High-pressure synthesis of noble metal hydrides. J Chem Phys 2013;138(13):134507. link1

[13] Wurtz A. On copper hydride. C R Hebd Acad Sci Paris 1844;18:702. French. link1

[14] Hasin P, Wu Y. Sonochemical synthesis of copper hydride (CuH). Chem Commun 2012;48(9):1302–4. link1

[15] Fukai Y. The metal-hydride system. 2nd ed. Berlin: Springer Verlag; 2005. link1

[16] Fitzsilmons NP, Jones W, Herley PJ. Studies of copper hydride. J Chem Soc 1995;91:713–8. link1

[17] Pépin CM, Geneste G, Dewaele A, Mezouar M, Loubeyre P. Synthesis of FeH5: a layered structure with atomic hydrogen slabs. Science 2017;357(6349):382–5. link1

[18] Wang M, Binns J, Donnelly ME, Peña-Alvarez M, Dalladay-Simpson P, Howie RT. High pressure synthesis and stability of cobalt hydrides. J Chem Phys 2018;148(14):144310. link1

[19] Fei Y, Ricolleau A, Frank M, Mibe K, Shen G, Prakapenka V. Toward an internally consistent pressure scale. Proc Natl Acad Sci USA 2007;104(22):9182–6. link1

[20] Mao HK, Xu J, Bell PM. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J Geophys Res 1986;91(B5):4673. link1

[21] Goncharov AF, Prakapenka VB, Struzhkin VV, Kantor I, Rivers ML, Dalton DA. Xray diffraction in the pulsed laser heated diamond anvil cell. Rev Sci Instrum 2010;81(11):113902. link1

[22] Prescher C, Prakapenka VB. DIOPTAS: a program for reduction of twodimensional X-ray diffraction data and data exploration. High Press Res 2015;35(3):223–30. link1

[23] Petrˇícˇek V, Dušek M, Palatinus L. Crystallographic computing system JANA2006: general features. Z Kristallogr Cryst Mater 2014;229(5):345–52. link1

[24] Baranowski B, Bochen´ ska K. The free energy and entropy of formation of nickel hydride. Z Phys Chem (NF) 1965;45(8):140–52. link1

[25] Ponyatovskiĭ EG, Antonov VE, Belash IT. Properties of high pressure phases in metal-hydrogen systems. Sov Phys Usp 1982;25(8):596–619. link1

[26] Prakapenka VB, Kubo A, Kuznetsov A, Laskin A, Shkurikhin O, Dera P, et al. Advanced flat top laser heating system for high pressure research at GSECARS: application to the melting behavior of germanium. High Press Res 2008;28 (3):225–35. link1

[27] Dewaele A, Loubeyre P, Mezouar M. Equations of state of six metals above 94 GPa. Phys Rev B Condens Matter Mater Phys 2004;70(9):1–8. link1

[28] Baranowski B, Majchrzak S, Flanagan TB. The volume increase of FCC metals and alloys due to interstitial hydrogen over a wide range of hydrogen contents. J Phys F Met Phys 1971;1(3):258–61. link1

[29] Somenkov VA, Glazkov VP, Irodova AV, Kurchotov IV. Crystal structure and volume effects in the hydrides. J Less Common Met 1987;129:171–80. link1

[30] Hemmes H, Driessen A, Griessen R, Gupta M. Isotope effects and pressure dependence of the Tc of superconducting stoichiometric PdH and PdD synthesized and measured in a diamond anvil cell. Phys Rev B Condens Matter 1989;39(7):4110–8. link1

[31] Scheler T, Degtyareva O, Marqués M, Guillaume CL, Proctor JE, Evans S, et al. Synthesis and properties of platinum hydride. Phys Rev B Condens Matter Mater Phys 2011;83(21):1–5. link1

[32] Degtyareva O, Proctor JE, Guillaume CL, Gregoryanz E, Hanfland M. Formation of transition metal hydrides at high pressures. Solid State Commun 2009;149:1583–6. link1

[33] Baranowski B, Filipek SM. 45 years of nickel hydride—history and perspectives. J Alloys Compd 2005;404–406:2–6. link1

Related Research