Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2019, Volume 5, Issue 4 doi: 10.1016/j.eng.2019.07.018

Toward Intelligent Machine Tool

National Numerical Control System Engineering Research Center, Huazhong University of Science and Technology, Wuhan 430074, China

Received: 2019-07-03 Revised: 2019-07-15 Accepted: 2019-07-16 Available online: 2019-07-22

Next Previous

Abstract

With the development of modern information technology—and particularly of the new generation of artificial intelligence (AI) technology—new opportunities are available for the development of the intelligent machine tool (IMT). Based on the three classical paradigms of intelligent manufacturing as defined by the Chinese Academy of Engineering, the concept, characteristics, and systemic structure of the IMT are presented in this paper. Three stages of machine tool evolution—from the manually operated machine tool (MOMT) to the IMT—are discussed, including the numerical control machine tool (NCMT), the smart machine tool (SMT), and the IMT. Furthermore, the four intelligent control principles of the IMT—namely, autonomous sensing and connection, autonomous learning and modeling, autonomous optimization and decision-making, and autonomous control and execution—are presented in detail. This paper then points out that the essential characteristic of the IMT is to acquire and accumulate knowledge through learning, and presents original key enabling technologies, including the instruction-domain-based analytical approach, theoretical and big-data-based hybrid modeling technology, and the double-code control method. Based on this research, an intelligent numerical control (INC) system and industrial prototypes of IMTs are developed. Three intelligent practices are conducted, demonstrating that the integration of the new generation of AI technology with advanced manufacturing technology is a feasible and convenient way to advance machine tools toward the IMT.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

Fig. 13

Fig. 14

References

[ 1 ] Zhou J, Li P, Zhou Y, Wang B, Zang J, Meng L. Toward new-generation intelligent manufacturing. Engineering 2018;4(1):11–20. link1

[ 2 ] Zhou J. Intelligent manufacturing—main direction of ‘‘Made in China 2025”. China Mech Eng 2015;26(17):2273–84.

[ 3 ] Chen J, Yang J, Zhou H, Xiang H, Zhu Z, Li Y, et al. CPS modeling of CNC machine tool work processes using an instruction-domain based approach. Engineering 2015;1(2):247–60. link1

[ 4 ] Liu RL, Zhang CR, Jiang Y, Wang K. Networked monitoring technology of numerical control machine tools based on MTConnect. Comput Integr Manuf Syst 2013;19(5):1078–84. link1

[ 5 ] Rehorn AG, Sejdic´ E, Jiang J. Fault diagnosis in machine tools using selective regional correlation. Mech Syst Signal Process 2006;20(5):1221–38. link1

[ 6 ] Kim DH, Song JY, Cha SK, Son H. The development of embedded device to detect chatter vibration in machine tools and CNC-based autonomous compensation. J Mech Sci Technol 2011;25(10):2623. link1

[ 7 ] Zhang S. Smart manufacturing and i5 smart machine tools. Mach Build Autom 2017;46(1):1–8. Chinese.

[ 8 ] Vijayaraghavan A, Sobel W, Fox A, Dornfeld D, Warndorf P. Improving machine tool interoperability using standardized interface protocols: MTConnect. In: Proceedings of 2008 International Symposium on Flexible Automation; 2008 Jun 23–26; Atlanta, GA, USA; 2008. link1

[ 9 ] Hu L, Nguyen NT, Tao W, Leu MC, Liu XF, Shahriar MR, et al. Modeling of cloudbased digital twins for smart manufacturing with MTConnect. Procedia Manuf 2018;26:1193–203. link1

[10] Umati: universal machine tool interface [Internet]. Frankfort: German Machine Tool Builders’ Association; [cited 2019 Jun 17]. Available from: https://vdw.de/en/technology-and-standardisation/umati-universal-machinetool-interface/.

[11] Weber A. GE ‘‘predix” the future of manufacturing. Assembly 2017;60(3): GE70–6.

[12] Siemens y TCS unen fuerzas para impulsar el IoT industrial en MindSphere. Eurofach Electron Actual Tecnol Ind Electrón 2017;(459):28–9. Spanish.

[13] Zhou H, Zhang C, Jiang Y, Chen J, inventors; Huazhong University of Science and Technology, assignee. [Double-code based control method of NC machining and the corresponding device]. China Patent CN201810305822.9. 2018 Nov 2. Chinese.

[14] Zhou J, Zhou Y, Wang B, Zang J. Human–cyber–physical systems (HCPSs) in the context of new-generation intelligent manufacturing. Engineering. Forthcoming 2019. link1

[15] Zhou H, Lang M, Hu P, Su Z, Chen J. The modeling, analysis, and application of the in-process machining data for CNC machining. Int J Adv Manuf Technol 2019;102(5–8):1051–66. link1

[16] Zain AM, Haron H, Sharif S. Application of GA to optimize cutting conditions for minimizing surface roughness in end milling machining process. Expert Syst Appl 2010;37(6):4650–9. link1

[17] An LB, Feng LJ, Lu CG. Cutting parameter optimization for multi-pass milling operations by genetic algorithms. Adv Mat Res 2011;160–162:1738–43. link1

[18] Saffar RJ, Razfar MR. Simulation of end milling operation for predicting cutting forces to minimize tool deflection by genetic algorithm. Mach Sci Technol 2010;14(1):81–101. link1

[19] Zuperl U, Cus F. Tool cutting force modeling in ball-end milling using multilevel perceptron. J Mater Process Technol 2004;153–154:268–75. link1

[20] Zuperl U, Cus F, Reibenschuh M. Neural control strategy of constant cutting force system in end milling. Robot Comput-Integr Manuf 2011;27(3):485–93. link1

[21] Yeung CH, Altintas Y, Erkorkmaz K. Virtual CNC system. Part I. System architecture. Int J Mach Tools Manuf 2006;46(10):1107–23. link1

[22] Yang S, Ghasemi AH, Lu X, Okwudire CE. Pre-compensation of servo contour errors using a model predictive control framework. Int J Mach Tools Manuf 2015;98:50–60. link1

[23] Erkorkmaz K, Altintas Y. High speed CNC system design. Part II: modeling and identification of feed drives. Int J Mach Tools Manuf 2001;41(10):1487–509.

[24] Huo F, Poo AN. Nonlinear autoregressive network with exogenous inputs based contour error reduction in CNC machines. Int J Mach Tools Manuf 2013;67:45–52. link1

[25] Li Z, Wang Y, Wang K. A data-driven method based on deep belief networks for backlash error prediction in machining centers. J Intell Manuf. Epub 2017 Dec 19. link1

Related Research