Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2019, Volume 5, Issue 5 doi: 10.1016/j.eng.2019.07.021

Engineering a High-Selectivity PVDF Hollow-Fiber Membrane for Cesium Removal

a Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
b Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China
c State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
d State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing 100875, China
e Xi'an High-Tech Institute, Xi'an 710025, China

Received: 2018-11-15 Revised: 2019-01-01 Accepted: 2019-04-23 Available online: 2019-07-31

Next Previous

Abstract

In this study, a copper ferrocyanide/silica/polyvinylidene fluoride (CuFC/SiO2/PVDF) hollow-fiber composite membrane was successfully synthesized through a facile and effective crosslinking strategy. The PVDF hollow-fiber membrane with embedded SiO2 was used to fix the dispersion of CuFC nanoparticles for cesium (Cs) removal. The surface morphology and chemical composition of the composite membrane were analyzed using scanning electron microscopy and X-ray photoelectron spectroscopy (XPS). The composite membrane showed a high Cs rejection rate and membrane flux at the three layers of CuFC and 0.5% SiO2, and its Cs rejection rate was not affected by variation in the pH (pH = 4–10). The modified membrane could be effectively regenerated many times using ammonium nitrate (NH4NO3). The Cs selectivity performance was verified by an efficient Cs rejection rate (76.25% and 88.67% in 8 h) in a solution of 100 μg·L–1 of Cs with 1 mmol·L–1 of competing cations (K+ and Na+). The CuFC/SiO2/PVDF hollowfiber composite membrane showed a particularly superior removal performance (greater than 90%) in natural surface water and simulated water with a low Cs concentration. Therefore, the CuFC/SiO2/PVDF hollow-fiber composite membrane can be used directly in engineering applications for the remediation of radioactive Cs-contaminated water.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

References

[ 1 ] Kozai N, Suzuki S, Aoyagi N, Sakamoto F, Ohnuki T. Radioactive fallout cesium in sewage sludge ash produced after the Fukushima Daiichi nuclear accident. Water Res 2015;68:616–26. link1

[ 2 ] Takata H, Kusakabe M, Inatomi N, Ikenoue T. Appearances of Fukushima Daiichi nuclear power plant—derived 137Cs in coastal waters around Japan: results from marine monitoring off nuclear power plants and facilities, 1983– 2016. Environ Sci Technol 2018;52(5):2629–37. link1

[ 3 ] Kim YK, Kim T, Kim Y, Harbottle D, Lee JW. Highly effective Cs+ removal by turbidity-free potassium copper hexacyanoferrate-immobilized magnetic hydrogels. J Hazard Mater 2017;340:130–9. link1

[ 4 ] Khannanov A, Nekljudov VV, Gareev B, Kiiamov A, Tour JM, Dimiev AM. Oxidatively modified carbon as efficient material for removing radionuclides from water. Carbon 2017;115:394–401. link1

[ 5 ] Liu X, Chen GR, Lee DJ, Kawamoto T, Tanaka H, Chen ML, et al. Adsorption removal of cesium from drinking waters: a mini review on use of biosorbents and other adsorbents. Bioresour Technol 2014;160:142–9. link1

[ 6 ] Ding S, Yang Y, Li C, Huang H, Hou LA. The effects of organic fouling on the removal of radionuclides by reverse osmosis membranes. Water Res 2016;95:174–84. link1

[ 7 ] Ding S, Yang Y, Huang H, Liu H, Hou LA. Effects of feed solution chemistry on low pressure reverse osmosis filtration of cesium and strontium. J Hazard Mater 2015;294:27–34. link1

[ 8 ] Rana D, Matsuura T, Kassim MA, Ismail AF. Radioactive decontamination of water by membrane processes—a review. Desalination 2013;321:77–92. link1

[ 9 ] Rajib M, Oguchi CT. Adsorption of 133Cs and 87Sr on pumice tuff: a comparative study between powder and intact solid phase. Acta Geochim 2017;36 (2):224–31. link1

[10] Ding D, Zhang Z, Chen R, Cai T. Selective removal of cesium by ammonium molybdophosphate-polyacrylonitrile bead and membrane. J Hazard Mater 2017;324(Pt B):753–61. link1

[11] De Haro-Del Rio DA, Al-Jubori S, Kontogiannis O, Papadatos-Gigantes D, Ajayi O, Li C, et al. The removal of caesium ions using supported clinoptilolite. J Hazard Mater 2015;289:1–8. link1

[12] Mu W, Yu Q, Li X, Wei H, Jian Y. Efficient removal of Cs+ and Sr2+ from aqueous solution using hierarchically structured hexagonal tungsten trioxide coated Fe3O4. Chem Eng J 2017;319:170–8. link1

[13] Lee NK, Khalid HR, Lee HK. Adsorption characteristics of cesium onto mesoporous geopolymers containing nano-crystalline zeolites. Micropor Mesopor Mat 2017;242:238–44. link1

[14] Yin X, Wang X, Wu H, Takahashi H, Inaba Y, Ohnuki T, et al. Effects of NH4 + , K+ , Mg2+, and Ca2+ on the cesium adsorption/desorption in binding sites of vermiculitized biotite. Environ Sci Technol 2017;51(23):13886–94. link1

[15] Yang HM, Hwang KS, Park CW, Lee KW. Sodium-copper hexacyanoferratefunctionalized magnetic nanoclusters for the highly efficient magnetic removal of radioactive caesium from seawater. Water Res 2017;125:81–90. link1

[16] Zhang H, Zhao X, Wei J, Li F. Removal of cesium from low-level radioactive wastewaters using magnetic potassium titanium hexacyanoferrate. Chem Eng J 2015;275:262–70. link1

[17] Vashnia S, Tavakoli H, Cheraghali R, Sepehrian H. Zinc hexacyanoferrate loaded mesoporous MCM-41 as a new adsorbent for cesium: equilibrium, kinetic and thermodynamic studies. Desalin Water Treat 2015;55:1220–8. link1

[18] Qing Y, Li J, Kang B, Chang S, Dai Y, Long Q, et al. Selective sorption mechanism of Cs+ on potassium nickel hexacyanoferrate(II) compounds. J Radioanal Nucl Chem 2015;304(2):527–33. link1

[19] Chen GR, Chang YR, Liu X, Kawamoto T, Tanaka H, Kitajima A, et al. Prussian blue (PB) granules for cesium (Cs) removal from drinking water. Separ Purif Tech 2015;143:146–51. link1

[20] Chen R, Tanaka H, Kawamoto T, Asai M, Fukushima C, Kurihara M, et al. Thermodynamics and mechanism studies on electrochemical removal of cesium ions from aqueous solution using a nanoparticle film of copper hexacyanoferrate. ACS Appl Mater Interfaces 2013;5(24):12984–90. link1

[21] Kim Y, Kim YK, Kim S, Harbottle D, Lee JW. Nanostructured potassium copper hexacyanoferrate-cellulose hydrogel for selective and rapid cesium adsorption. Chem Eng J 2017;313:1042–50. link1

[22] Hwang KS, Park CW, Lee KW, Park SJ, Yang HM. Highly efficient removal of radioactive cesium by sodium-copper hexacyanoferrate-modified magnetic nanoparticles. Colloid Surface A 2017;516:375–82. link1

[23] Yang HM, Lee KW, Seo BK, Moon JK. Copper ferrocyanide-functionalized magnetic nanoparticles for the selective removal of radioactive cesium. J Nanosci Nanotechnol 2015;15(2):1695–9. link1

[24] Olatunji MA, Khandaker MU, Mahmud HNME, Amin YM. Influence of adsorption parameters on cesium uptake from aqueous solutions—a brief review. RSC Adv 2015;5(88):71658–83. link1

[25] Michel C, Barre Y, De Windt L, De Dieuleveult C, Brackx E, Grandjean A. Ion exchange and structural properties of a new cyanoferrate mesoporous silica material for Cs removal from natural saline waters. J Environ Chem Eng 2017;5 (1):810–7. link1

[26] Banerjee D, Sandhya U, Pahan S, Joseph A, Ananthanarayanan A, Shah JG. Removal of 137Cs and 90Sr from low-level radioactive effluents by hexacyanoferrate loaded synthetic 4A type zeolite. J Radioanal Nucl Chem 2017;311(1):893–902. link1

[27] Sangvanich T, Sukwarotwat V, Wiacek RJ, Grudzien RM, Fryxell GE, Addleman RS, et al. Selective capture of cesium and thallium from natural waters and simulated wastes with copper ferrocyanide functionalized mesoporous silica. J Hazard Mater 2010;182(1–3):225–31. link1

[28] Chen GR, Chang YR, Liu X, Kawamoto T, Tanaka H, Parajuli D, et al. Prussian blue non-woven filter for cesium removal from drinking water. Separ Purif Tech 2015;153:37–42. link1

[29] Efome JE, Rana D, Matsuura T, Lan CQ. Experiment and modeling for flux and permeate concentration of heavy metal ion in adsorptive membrane filtration using a metal-organic framework incorporated nanofibrous membrane. Chem Eng J 2018;352:737–44. link1

[30] Efome JE, Rana D, Matsuura T, Lan CQ. Insight studies on metal-organic framework nanofibrous membrane adsorption and activation for heavy metal ions removal from aqueous solution. ACS Appl Mater Interfaces 2018;10 (22):18619–29. link1

[31] Efome JE, Rana D, Matsuura T, Lan CQ. Metal–organic frameworks supported on nanofibers to remove heavy metals. J Mater Chem A Mater Energy Sustain 2018;6(10):4550–5. link1

[32] Chaudhury S, Pandey AK, Goswami A. Copper ferrocyanide loaded track etched membrane: an effective cesium adsorbent. J Radioanal Nucl Chem 2015;304 (2):697–703. link1

[33] Kim H, Kim M, Lee W, Kim S. Rapid removal of radioactive cesium by polyacrylonitrile nanofibers containing Prussian blue. J Hazard Mater 2018;347:106–13. link1

[34] Chen R, Tanaka H, Kawamoto T, Asai M, Fukushima C, Na H, et al. Selective removal of cesium ions from wastewater using copper hexacyanoferrate nanofilms in an electrochemical system. Electrochim Acta 2013;87:119–25. link1

[35] Bang H, Watanabe K, Nakashima R, Kai W, Song KH, Lee JS, et al. A highly hydrophilic water-insoluble nanofiber composite as an efficient and easily-handleable adsorbent for the rapid adsorption of cesium from radioactive wastewater. RSC Adv 2014;4(103):59571–8. link1

[36] Jia Z, Cheng X, Guo Y, Tu L. In-situ preparation of iron(III) hexacyanoferrate nano-layer on polyacrylonitrile membranes for cesium adsorption from aqueous solutions. Chem Eng J 2017;325:513–20. link1

[37] Ding S, Zhang L, Li Y, Hou LA. Fabrication of a novel polyvinylidene fluoride membrane via binding SiO2 nanoparticles and a copper ferrocyanide layer onto a membrane surface for selective removal of cesium. J Hazard Mater 2019;368:292–9. link1

[38] Qin A, Li X, Zhao X, Liu D, He C. Engineering a highly hydrophilic PVDF membrane via binding TiO2 nanoparticles and a PVA layer onto a membrane surface. ACS Appl Mater Interfaces 2015;7(16):8427–36. link1

[39] Yatsimirskii KB, Nemoshkalenko VV, Nazarenko YP, Aleshin VG, Zhilinskaya VV, Tomashevsky NA. Use of X-ray photoelectron and Mössbauer spectroscopies in the study of iron pentacyanide complexes. J Electron Spectrosc Relat Phenom 1977;10(3):239–45. link1

[40] Seah MP, Smith GC, Anthony MT. AES: energy calibration of electron spectrometers. I—an absolute, traceable energy calibration and the provision of atomic reference line energies. Surf Interface Anal 1990;15(5):293–308. link1

[41] Loos-Neskovic C, Ayrault S, Badillo V, Jimenez B, Garnier E, Fedoroff M, et al. Structure of copper-potassium hexacyanoferrate(II) and sorption mechanisms of cesium. J Solid State Chem 2004;177(6):1817–28. link1

[42] Egorin A, Tokar E, Zemskova L, Didenko N, Portnyagin A, Azarova Y, et al. Chitosan-ferrocyanide sorbents for concentrating Cs-137 from seawater. Sep Sci Technol 2017;52(12):1983–91. link1

[43] Nilchi A, Malek B, Ghanadi Maragheh M, Khanchi A. Exchange properties of cyanide complexes. J Radioanal Nucl Chem 2003;258(3):457–62. link1

Related Research